相干光波通信

J. Salz
{"title":"相干光波通信","authors":"J. Salz","doi":"10.1117/12.967602","DOIUrl":null,"url":null,"abstract":"The chief objective of this paper is to develop a fundamental understanding of the effects of laser phase noise on the performance of coherent lightwave communication systems. A comprehensive treatment applicable to a wide variety of coherent receiver designs under a broad range of conditions is provided. Our models and analytical tools are developed in sufficient detail to encompass a broad range of applications. Formulas are derived for the bit error rate in homodyne and heterodyne Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK), Frequency Shift Keying (FSK) and on-off keying. Estimates are provided of the penalties accrued due to phase noise. Based on detailed mathematical analysis and estimates, we made several findings. Near quantum-limited receiver sensitivity can be achieved with PSK using homodyne detection only at signaling rates 3000 times greater than the laser linewidth. A receiver sensitivity 3 to 6 decibels poorer than the quantum limit can be achieved with heterodyne rather than homodyne detection. DPSK, for example, can operate at rates only 300 times greater than the laser linewidth. At lower rates, FSK is an attractive candidate. It can be designed to be extremely tolerant of phase noise by using wide frequency deviations.","PeriodicalId":170077,"journal":{"name":"AT&T Technical Journal","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"193","resultStr":"{\"title\":\"Coherent lightwave communications\",\"authors\":\"J. Salz\",\"doi\":\"10.1117/12.967602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chief objective of this paper is to develop a fundamental understanding of the effects of laser phase noise on the performance of coherent lightwave communication systems. A comprehensive treatment applicable to a wide variety of coherent receiver designs under a broad range of conditions is provided. Our models and analytical tools are developed in sufficient detail to encompass a broad range of applications. Formulas are derived for the bit error rate in homodyne and heterodyne Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK), Frequency Shift Keying (FSK) and on-off keying. Estimates are provided of the penalties accrued due to phase noise. Based on detailed mathematical analysis and estimates, we made several findings. Near quantum-limited receiver sensitivity can be achieved with PSK using homodyne detection only at signaling rates 3000 times greater than the laser linewidth. A receiver sensitivity 3 to 6 decibels poorer than the quantum limit can be achieved with heterodyne rather than homodyne detection. DPSK, for example, can operate at rates only 300 times greater than the laser linewidth. At lower rates, FSK is an attractive candidate. It can be designed to be extremely tolerant of phase noise by using wide frequency deviations.\",\"PeriodicalId\":170077,\"journal\":{\"name\":\"AT&T Technical Journal\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"193\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AT&T Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.967602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AT&T Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.967602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 193

摘要

本文的主要目的是对激光相位噪声对相干光波通信系统性能的影响有一个基本的认识。在广泛的条件下提供了适用于各种相干接收器设计的综合处理。我们的模型和分析工具开发的足够详细,以涵盖广泛的应用。推导了纯差和外差相移键控(PSK)、差分相移键控(DPSK)、频移键控(FSK)和开关键控的误码率公式。给出了由于相位噪声而产生的惩罚的估计。基于详细的数学分析和估计,我们有几个发现。近量子限制接收器灵敏度可以实现PSK使用纯差检测只有在信号速率大于激光线宽3000倍。接收机灵敏度比量子极限差3到6分贝可以通过外差而不是内差检测来实现。例如,DPSK的工作速率仅为激光线宽的300倍。在较低的利率下,FSK是一个有吸引力的候选人。通过使用宽频率偏差,它可以被设计成对相位噪声具有极大的容忍度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coherent lightwave communications
The chief objective of this paper is to develop a fundamental understanding of the effects of laser phase noise on the performance of coherent lightwave communication systems. A comprehensive treatment applicable to a wide variety of coherent receiver designs under a broad range of conditions is provided. Our models and analytical tools are developed in sufficient detail to encompass a broad range of applications. Formulas are derived for the bit error rate in homodyne and heterodyne Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK), Frequency Shift Keying (FSK) and on-off keying. Estimates are provided of the penalties accrued due to phase noise. Based on detailed mathematical analysis and estimates, we made several findings. Near quantum-limited receiver sensitivity can be achieved with PSK using homodyne detection only at signaling rates 3000 times greater than the laser linewidth. A receiver sensitivity 3 to 6 decibels poorer than the quantum limit can be achieved with heterodyne rather than homodyne detection. DPSK, for example, can operate at rates only 300 times greater than the laser linewidth. At lower rates, FSK is an attractive candidate. It can be designed to be extremely tolerant of phase noise by using wide frequency deviations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acronyms and abbreviations World-class hardware and transmission design Service creation technologies for the intelligent network International applications of AT&T's intelligent network platforms ISHMAEL: An integrated software/hardware maintenance and evolution environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1