仿射数据摄动不确定集下的鲁棒平均绝对偏差投资组合模型

Zhifeng Dai, Fenghua Wen
{"title":"仿射数据摄动不确定集下的鲁棒平均绝对偏差投资组合模型","authors":"Zhifeng Dai, Fenghua Wen","doi":"10.1109/ICSSSM.2013.6602489","DOIUrl":null,"url":null,"abstract":"In this paper, based on the robust optimization techniques in Bertsimas and Sim[8], we propose a computationally tractable robust mean absolute deviation portfolio model. The purpose is to consider parameter uncertainty by controlling the impact of estimation errors on the portfolio strategy performance. The remarkable characteristic of the new method is that the robust optimization model retains the complexity of original portfolio optimization problem, i.e., the robust counterpart problem is still a linear programming problem. Empirical analysis with real market data to illustrate the behavior of the robust optimization model is efficient.","PeriodicalId":354195,"journal":{"name":"2013 10th International Conference on Service Systems and Service Management","volume":"365 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust mean absolute deviation portfolio model under Affine Data Perturbation uncertainty set\",\"authors\":\"Zhifeng Dai, Fenghua Wen\",\"doi\":\"10.1109/ICSSSM.2013.6602489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, based on the robust optimization techniques in Bertsimas and Sim[8], we propose a computationally tractable robust mean absolute deviation portfolio model. The purpose is to consider parameter uncertainty by controlling the impact of estimation errors on the portfolio strategy performance. The remarkable characteristic of the new method is that the robust optimization model retains the complexity of original portfolio optimization problem, i.e., the robust counterpart problem is still a linear programming problem. Empirical analysis with real market data to illustrate the behavior of the robust optimization model is efficient.\",\"PeriodicalId\":354195,\"journal\":{\"name\":\"2013 10th International Conference on Service Systems and Service Management\",\"volume\":\"365 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Service Systems and Service Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSSM.2013.6602489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Service Systems and Service Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSSM.2013.6602489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文基于Bertsimas和Sim[8]的稳健优化技术,提出了一种计算易于处理的稳健平均绝对偏差投资组合模型。目的是通过控制估计误差对组合策略绩效的影响来考虑参数的不确定性。新方法的显著特点是鲁棒优化模型保留了原投资组合优化问题的复杂性,即鲁棒对应问题仍然是一个线性规划问题。用实际市场数据进行实证分析,说明了鲁棒优化模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust mean absolute deviation portfolio model under Affine Data Perturbation uncertainty set
In this paper, based on the robust optimization techniques in Bertsimas and Sim[8], we propose a computationally tractable robust mean absolute deviation portfolio model. The purpose is to consider parameter uncertainty by controlling the impact of estimation errors on the portfolio strategy performance. The remarkable characteristic of the new method is that the robust optimization model retains the complexity of original portfolio optimization problem, i.e., the robust counterpart problem is still a linear programming problem. Empirical analysis with real market data to illustrate the behavior of the robust optimization model is efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurements and evaluation of regional innovation capacity and spatial difference Pricing and channel choices for the competitive direct channel introduction Modeling multi-agent system dynamics: Graph semantic based approach Peer-review: Overconfidence bias in a conference setting Towards logistics service provider selection strategy using primitive cognitive network process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1