Phong D. Vo, A. Gînsca, H. Borgne, Adrian Daniel Popescu
{"title":"使用带有噪声的Web图像进行卷积网络的有效训练","authors":"Phong D. Vo, A. Gînsca, H. Borgne, Adrian Daniel Popescu","doi":"10.1109/CBMI.2015.7153607","DOIUrl":null,"url":null,"abstract":"Deep convolutional networks have recently shown very interesting performance in a variety of computer vision tasks. Besides network architecture optimization, a key contribution to their success is the availability of training data. Network training is usually done with manually validated data but this approach has a significant cost and poses a scalability problem. Here we introduce an innovative pipeline that combines weakly-supervised image reranking methods and network fine-tuning to effectively train convolutional networks from noisy Web collections. We evaluate the proposed training method versus the conventional supervised training on cross-domain classification tasks. Results show that our method outperforms the conventional method in all of the three datasets. Our findings open opportunities for researchers and practitioners to use convolutional networks with inexpensive training cost.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Effective training of convolutional networks using noisy Web images\",\"authors\":\"Phong D. Vo, A. Gînsca, H. Borgne, Adrian Daniel Popescu\",\"doi\":\"10.1109/CBMI.2015.7153607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep convolutional networks have recently shown very interesting performance in a variety of computer vision tasks. Besides network architecture optimization, a key contribution to their success is the availability of training data. Network training is usually done with manually validated data but this approach has a significant cost and poses a scalability problem. Here we introduce an innovative pipeline that combines weakly-supervised image reranking methods and network fine-tuning to effectively train convolutional networks from noisy Web collections. We evaluate the proposed training method versus the conventional supervised training on cross-domain classification tasks. Results show that our method outperforms the conventional method in all of the three datasets. Our findings open opportunities for researchers and practitioners to use convolutional networks with inexpensive training cost.\",\"PeriodicalId\":387496,\"journal\":{\"name\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2015.7153607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effective training of convolutional networks using noisy Web images
Deep convolutional networks have recently shown very interesting performance in a variety of computer vision tasks. Besides network architecture optimization, a key contribution to their success is the availability of training data. Network training is usually done with manually validated data but this approach has a significant cost and poses a scalability problem. Here we introduce an innovative pipeline that combines weakly-supervised image reranking methods and network fine-tuning to effectively train convolutional networks from noisy Web collections. We evaluate the proposed training method versus the conventional supervised training on cross-domain classification tasks. Results show that our method outperforms the conventional method in all of the three datasets. Our findings open opportunities for researchers and practitioners to use convolutional networks with inexpensive training cost.