基于神经网络的DC-DC变换器自适应在线训练控制方法

H. Maruta, M. Motomura, F. Kurokawa
{"title":"基于神经网络的DC-DC变换器自适应在线训练控制方法","authors":"H. Maruta, M. Motomura, F. Kurokawa","doi":"10.1109/ICMLA.2012.152","DOIUrl":null,"url":null,"abstract":"This study presents a novel adaptive control based on a neural network for dc - dc converters. The control method is required to adapt to changes of conditions to obtain high performance dc-dc converters. In this study, the neural network control is adopted to improve the transient response of dc-dc converters. It woks in coordination with a conventional PID control to realize a high adaptive method. The neural network is trained with data which is obtained on-line. Therefore, the neural network control can adapt dynamically to change of input. The adaptation is realized by the modification of the reference in the PID control. The effect of the presented method is confirmed in simulations. Results show the presented method contributes to realize such adaptive control.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Novel Neural Network Based Control Method with Adaptive On-Line Training for DC-DC Converters\",\"authors\":\"H. Maruta, M. Motomura, F. Kurokawa\",\"doi\":\"10.1109/ICMLA.2012.152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel adaptive control based on a neural network for dc - dc converters. The control method is required to adapt to changes of conditions to obtain high performance dc-dc converters. In this study, the neural network control is adopted to improve the transient response of dc-dc converters. It woks in coordination with a conventional PID control to realize a high adaptive method. The neural network is trained with data which is obtained on-line. Therefore, the neural network control can adapt dynamically to change of input. The adaptation is realized by the modification of the reference in the PID control. The effect of the presented method is confirmed in simulations. Results show the presented method contributes to realize such adaptive control.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于神经网络的直流变换器自适应控制方法。为了获得高性能的dc-dc变换器,要求控制方法适应条件的变化。本研究采用神经网络控制来改善dc-dc变换器的暂态响应。它与传统的PID控制协同工作,实现了高自适应控制。神经网络用在线获取的数据进行训练。因此,神经网络控制可以动态适应输入的变化。通过修改PID控制中的参考值来实现自适应。仿真结果验证了该方法的有效性。结果表明,该方法有助于实现这种自适应控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Neural Network Based Control Method with Adaptive On-Line Training for DC-DC Converters
This study presents a novel adaptive control based on a neural network for dc - dc converters. The control method is required to adapt to changes of conditions to obtain high performance dc-dc converters. In this study, the neural network control is adopted to improve the transient response of dc-dc converters. It woks in coordination with a conventional PID control to realize a high adaptive method. The neural network is trained with data which is obtained on-line. Therefore, the neural network control can adapt dynamically to change of input. The adaptation is realized by the modification of the reference in the PID control. The effect of the presented method is confirmed in simulations. Results show the presented method contributes to realize such adaptive control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1