Tomás Mantecón, Carlos R. del-Blanco, F. Jaureguizar, N. García
{"title":"基于局部量化模式深度空间图的人脸视觉识别访问控制","authors":"Tomás Mantecón, Carlos R. del-Blanco, F. Jaureguizar, N. García","doi":"10.1109/ICCE.2015.7066512","DOIUrl":null,"url":null,"abstract":"A novel and robust biometric face identification algorithm for access control applications is proposed. The key contribution is the design of a high discriminative feature descriptor for depth imagery, called Depth Spatiogram of Local Quantized Patterns, which is used as input of a bank of Support Vector Machine classifiers.","PeriodicalId":169402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics (ICCE)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Access control based on visual face recognition using Depth Spatiograms of Local Quantized Patterns\",\"authors\":\"Tomás Mantecón, Carlos R. del-Blanco, F. Jaureguizar, N. García\",\"doi\":\"10.1109/ICCE.2015.7066512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel and robust biometric face identification algorithm for access control applications is proposed. The key contribution is the design of a high discriminative feature descriptor for depth imagery, called Depth Spatiogram of Local Quantized Patterns, which is used as input of a bank of Support Vector Machine classifiers.\",\"PeriodicalId\":169402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2015.7066512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2015.7066512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Access control based on visual face recognition using Depth Spatiograms of Local Quantized Patterns
A novel and robust biometric face identification algorithm for access control applications is proposed. The key contribution is the design of a high discriminative feature descriptor for depth imagery, called Depth Spatiogram of Local Quantized Patterns, which is used as input of a bank of Support Vector Machine classifiers.