{"title":"数据路径体系结构的软件加速功能故障仿真","authors":"M. Kassab, N. Mukherjee, J. Rajski, J. Tyszer","doi":"10.1145/217474.217551","DOIUrl":null,"url":null,"abstract":"This paper demonstrates how fault simulation of building blocks found in data-path architectures can be performed extremely efficiently and accurately by taking advantage of their simple functional models and structural regularity. This technique can be used to accelerate the simulation of those blocks in virtually any fault simulation environment, resulting in fault simulation algorithms that can perform fault grading in a very demanding BIST environment.","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Software Accelerated Functional Fault Simulation for Data-Path Architectures\",\"authors\":\"M. Kassab, N. Mukherjee, J. Rajski, J. Tyszer\",\"doi\":\"10.1145/217474.217551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates how fault simulation of building blocks found in data-path architectures can be performed extremely efficiently and accurately by taking advantage of their simple functional models and structural regularity. This technique can be used to accelerate the simulation of those blocks in virtually any fault simulation environment, resulting in fault simulation algorithms that can perform fault grading in a very demanding BIST environment.\",\"PeriodicalId\":422297,\"journal\":{\"name\":\"32nd Design Automation Conference\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/217474.217551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Software Accelerated Functional Fault Simulation for Data-Path Architectures
This paper demonstrates how fault simulation of building blocks found in data-path architectures can be performed extremely efficiently and accurately by taking advantage of their simple functional models and structural regularity. This technique can be used to accelerate the simulation of those blocks in virtually any fault simulation environment, resulting in fault simulation algorithms that can perform fault grading in a very demanding BIST environment.