用于高压直流输电链路的智能电流控制器

K. Narendra, K. Khorasani, V. Sood, R. Patel
{"title":"用于高压直流输电链路的智能电流控制器","authors":"K. Narendra, K. Khorasani, V. Sood, R. Patel","doi":"10.1109/PICA.1997.599379","DOIUrl":null,"url":null,"abstract":"This paper describes an intelligent current controller for the fast and flexible control of an HVDC transmission link using artificial neural network (ANN) and fuzzy logic (FL) paradigms. A simple yet effective ANN architecture is presented with online adaptation of the activation function and learning parameters. Two methods of adapting the learning parameters are presented. In the first method, a heuristic approach to evaluate the learning rate as a polynomial of an energy function is considered. In the second method, a FL based online adaptation of the learning parameters is discussed. Performance of ANN, ANN-FL based and PI controllers are compared. A feasibility analysis is carried out to implement the proposed neural controller algorithm in real-time.","PeriodicalId":383749,"journal":{"name":"Proceedings of the 20th International Conference on Power Industry Computer Applications","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Intelligent current controller for an HVDC transmission link\",\"authors\":\"K. Narendra, K. Khorasani, V. Sood, R. Patel\",\"doi\":\"10.1109/PICA.1997.599379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an intelligent current controller for the fast and flexible control of an HVDC transmission link using artificial neural network (ANN) and fuzzy logic (FL) paradigms. A simple yet effective ANN architecture is presented with online adaptation of the activation function and learning parameters. Two methods of adapting the learning parameters are presented. In the first method, a heuristic approach to evaluate the learning rate as a polynomial of an energy function is considered. In the second method, a FL based online adaptation of the learning parameters is discussed. Performance of ANN, ANN-FL based and PI controllers are compared. A feasibility analysis is carried out to implement the proposed neural controller algorithm in real-time.\",\"PeriodicalId\":383749,\"journal\":{\"name\":\"Proceedings of the 20th International Conference on Power Industry Computer Applications\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International Conference on Power Industry Computer Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICA.1997.599379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Power Industry Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1997.599379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文介绍了一种采用人工神经网络(ANN)和模糊逻辑(FL)方法对高压直流输电链路进行快速、灵活控制的智能电流控制器。提出了一种简单有效的神经网络结构,通过在线自适应激活函数和学习参数。提出了两种自适应学习参数的方法。在第一种方法中,考虑了用能量函数的多项式来评估学习率的启发式方法。在第二种方法中,讨论了基于FL的学习参数在线自适应。比较了神经网络控制器、基于神经网络fl控制器和PI控制器的性能。对所提出的神经控制器算法进行了实时实现的可行性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent current controller for an HVDC transmission link
This paper describes an intelligent current controller for the fast and flexible control of an HVDC transmission link using artificial neural network (ANN) and fuzzy logic (FL) paradigms. A simple yet effective ANN architecture is presented with online adaptation of the activation function and learning parameters. Two methods of adapting the learning parameters are presented. In the first method, a heuristic approach to evaluate the learning rate as a polynomial of an energy function is considered. In the second method, a FL based online adaptation of the learning parameters is discussed. Performance of ANN, ANN-FL based and PI controllers are compared. A feasibility analysis is carried out to implement the proposed neural controller algorithm in real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimization-based framework for the quick analysis of power transactions Decision Aid Function for Restoration of transmission power systems: conceptual design and real time considerations A new digital filter for phasor computation. II. Evaluation Generalized observability analysis and measurement classification Generalized state estimation [power systems]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1