排除异常值后预测学生类别的机器学习工具

Anindita Desarkar, Ajanta Das, C. Chaudhuri
{"title":"排除异常值后预测学生类别的机器学习工具","authors":"Anindita Desarkar, Ajanta Das, C. Chaudhuri","doi":"10.4018/jitr.299380","DOIUrl":null,"url":null,"abstract":"Statistical outlier detection techniques uses academic performance oriented results to find the truly brilliant as well as the weakest amongst a colony of students. Machine Learning allows further partitions within the remaining student community, based on both merit and personality. Present work proposes a decision tree model for predicting three more appropriate categories. It utilizes Text Analytic tools to assess student characteristic traits from their textual responses and feedbacks. The cream of the general pool is chosen to belong to a top class comprising the mentor group, provided they can academically assist the weaker of the lot. But all on the top may not be suited for mentor-ship role - textual assessment data delves to reveal character orientations favouring such decisions. The bulk who can manage their own forms the second class. The bottom of the pool benefits with assistance from the mentor group and comprise the third class.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Tool to Predict Student Categories After Outlier Removal\",\"authors\":\"Anindita Desarkar, Ajanta Das, C. Chaudhuri\",\"doi\":\"10.4018/jitr.299380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical outlier detection techniques uses academic performance oriented results to find the truly brilliant as well as the weakest amongst a colony of students. Machine Learning allows further partitions within the remaining student community, based on both merit and personality. Present work proposes a decision tree model for predicting three more appropriate categories. It utilizes Text Analytic tools to assess student characteristic traits from their textual responses and feedbacks. The cream of the general pool is chosen to belong to a top class comprising the mentor group, provided they can academically assist the weaker of the lot. But all on the top may not be suited for mentor-ship role - textual assessment data delves to reveal character orientations favouring such decisions. The bulk who can manage their own forms the second class. The bottom of the pool benefits with assistance from the mentor group and comprise the third class.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitr.299380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.299380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

统计异常值检测技术使用以学习成绩为导向的结果,在一群学生中找到真正优秀的学生和最弱的学生。机器学习允许在剩余的学生群体中进一步划分,基于优点和个性。目前的工作提出了一个决策树模型来预测三个更合适的类别。它利用文本分析工具从学生的文本回应和反馈中评估学生的特征特征。一般池中的精华被选为属于由导师小组组成的顶级班级,前提是他们可以在学术上帮助这批人中的弱者。但并非所有高层人士都适合担任导师角色——文本评估数据深入揭示了倾向于此类决定的性格倾向。能管理自己表格的人属于第二类。池子底的人受益于导师小组的帮助,组成了第三个班级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Tool to Predict Student Categories After Outlier Removal
Statistical outlier detection techniques uses academic performance oriented results to find the truly brilliant as well as the weakest amongst a colony of students. Machine Learning allows further partitions within the remaining student community, based on both merit and personality. Present work proposes a decision tree model for predicting three more appropriate categories. It utilizes Text Analytic tools to assess student characteristic traits from their textual responses and feedbacks. The cream of the general pool is chosen to belong to a top class comprising the mentor group, provided they can academically assist the weaker of the lot. But all on the top may not be suited for mentor-ship role - textual assessment data delves to reveal character orientations favouring such decisions. The bulk who can manage their own forms the second class. The bottom of the pool benefits with assistance from the mentor group and comprise the third class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Benchmarking Serverless Computing: Performance and Usability MAC Protocol Analysis for Wireless Sensor Networks Prognostic Model for the Risk of Coronavirus Disease (COVID-19) Using Fuzzy Logic Modeling Evaluation of Teachers' Innovation and Entrepreneurship Ability in Universities Based on Artificial Neural Networks Cluster-Based Vehicle Routing on Road Segments in Dematerialised Traffic Infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1