{"title":"不丢失带宽:自适应传输功率和多跳拓扑控制","authors":"Hyung-Sin Kim, Jeongyeup Paek, D. Culler, S. Bahk","doi":"10.1109/DCOSS.2017.23","DOIUrl":null,"url":null,"abstract":"We show that a multihop wireless network can achieve better bandwidth and routing stability when transmission power and routing topology are jointly and adaptively controlled. Our experiments show that the predominant 'fixed and uniform' transmission power strategy with 'link quality and hop distance'-based routing topology construction loses significant bandwidth due to hidden terminal and load imbalance problems. We design an adaptive and distributed control mechanism for transmission power and routing topology, PCRPL, within the standard RPL routing protocol. We implement PC-RPL on real embedded devices and evaluate its performance on a 49-node multihop testbed. PC-RPL reduces total end-to-end packet losses ~7-fold without increasing hop distance compared to RPL with the highest transmission power, resulting in 17% improvement in aggregate bandwidth and 64% for the worst-case node.","PeriodicalId":399222,"journal":{"name":"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Do Not Lose Bandwidth: Adaptive Transmission Power and Multihop Topology Control\",\"authors\":\"Hyung-Sin Kim, Jeongyeup Paek, D. Culler, S. Bahk\",\"doi\":\"10.1109/DCOSS.2017.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a multihop wireless network can achieve better bandwidth and routing stability when transmission power and routing topology are jointly and adaptively controlled. Our experiments show that the predominant 'fixed and uniform' transmission power strategy with 'link quality and hop distance'-based routing topology construction loses significant bandwidth due to hidden terminal and load imbalance problems. We design an adaptive and distributed control mechanism for transmission power and routing topology, PCRPL, within the standard RPL routing protocol. We implement PC-RPL on real embedded devices and evaluate its performance on a 49-node multihop testbed. PC-RPL reduces total end-to-end packet losses ~7-fold without increasing hop distance compared to RPL with the highest transmission power, resulting in 17% improvement in aggregate bandwidth and 64% for the worst-case node.\",\"PeriodicalId\":399222,\"journal\":{\"name\":\"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCOSS.2017.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS.2017.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Do Not Lose Bandwidth: Adaptive Transmission Power and Multihop Topology Control
We show that a multihop wireless network can achieve better bandwidth and routing stability when transmission power and routing topology are jointly and adaptively controlled. Our experiments show that the predominant 'fixed and uniform' transmission power strategy with 'link quality and hop distance'-based routing topology construction loses significant bandwidth due to hidden terminal and load imbalance problems. We design an adaptive and distributed control mechanism for transmission power and routing topology, PCRPL, within the standard RPL routing protocol. We implement PC-RPL on real embedded devices and evaluate its performance on a 49-node multihop testbed. PC-RPL reduces total end-to-end packet losses ~7-fold without increasing hop distance compared to RPL with the highest transmission power, resulting in 17% improvement in aggregate bandwidth and 64% for the worst-case node.