基于Harris Hawk优化器的多目标机车车辆维修调度优化

Yit Hong Choo, Vu Le, Michael Johnstone, Doug Creighton, Himanshu Jindal, Kevin Tan
{"title":"基于Harris Hawk优化器的多目标机车车辆维修调度优化","authors":"Yit Hong Choo, Vu Le, Michael Johnstone, Doug Creighton, Himanshu Jindal, Kevin Tan","doi":"10.1109/IAICT59002.2023.10205863","DOIUrl":null,"url":null,"abstract":"In line with Industry 4.0, various advanced technologies such as sensors, automation, and artificial intelligence (AI) methods have been leveraged to enhance maintenance processes in the rolling stock industry. In particular, AI techniques are useful for optimising maintenance scheduling and planning tasks for rolling stocks. This study focuses on the use of a metaheuristic method, namely an enhanced multi-objective Harris’ Hawk optimiser (MO-HHO), for optimising competing objectives based on data obtained from a railway maintenance company. The results of MO-HHO are evaluated and compared with those from other competing models. The findings demonstrate the usefulness of MO-HHO in tackling multi-objective train maintenance scheduling tasks in practical environments.","PeriodicalId":339796,"journal":{"name":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of Multi-objective Rolling Stock Maintenance Scheduling with Harris’ Hawk Optimiser\",\"authors\":\"Yit Hong Choo, Vu Le, Michael Johnstone, Doug Creighton, Himanshu Jindal, Kevin Tan\",\"doi\":\"10.1109/IAICT59002.2023.10205863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In line with Industry 4.0, various advanced technologies such as sensors, automation, and artificial intelligence (AI) methods have been leveraged to enhance maintenance processes in the rolling stock industry. In particular, AI techniques are useful for optimising maintenance scheduling and planning tasks for rolling stocks. This study focuses on the use of a metaheuristic method, namely an enhanced multi-objective Harris’ Hawk optimiser (MO-HHO), for optimising competing objectives based on data obtained from a railway maintenance company. The results of MO-HHO are evaluated and compared with those from other competing models. The findings demonstrate the usefulness of MO-HHO in tackling multi-objective train maintenance scheduling tasks in practical environments.\",\"PeriodicalId\":339796,\"journal\":{\"name\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT59002.2023.10205863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT59002.2023.10205863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据工业4.0,各种先进技术,如传感器、自动化和人工智能(AI)方法已被利用来增强铁路车辆行业的维护过程。特别是,人工智能技术对于优化铁路车辆的维护调度和规划任务非常有用。本研究的重点是使用元启发式方法,即增强型多目标哈里斯鹰优化器(MO-HHO),用于优化基于从铁路维修公司获得的数据的竞争目标。对MO-HHO模型的结果进行了评价,并与其他竞争模型的结果进行了比较。研究结果表明,在实际环境中,MO-HHO在处理多目标列车维修调度任务方面是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimisation of Multi-objective Rolling Stock Maintenance Scheduling with Harris’ Hawk Optimiser
In line with Industry 4.0, various advanced technologies such as sensors, automation, and artificial intelligence (AI) methods have been leveraged to enhance maintenance processes in the rolling stock industry. In particular, AI techniques are useful for optimising maintenance scheduling and planning tasks for rolling stocks. This study focuses on the use of a metaheuristic method, namely an enhanced multi-objective Harris’ Hawk optimiser (MO-HHO), for optimising competing objectives based on data obtained from a railway maintenance company. The results of MO-HHO are evaluated and compared with those from other competing models. The findings demonstrate the usefulness of MO-HHO in tackling multi-objective train maintenance scheduling tasks in practical environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UE Clustering Based on Grid Affinity Propagation for mmWave D2D in Virtual Small Cells Temporal-Spatial Time Series Self-Attention 2D & 3D Human Motion Forecasting An End-to-end Anchorless Approach to Recognize Hand Gestures using CenterNet Automated Human Facial Emotion Recognition System Using Depthwise Separable Convolutional Neural Network Snacks Detection Under Overlapped Conditions Using Computer Vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1