{"title":"线性图像滤波中模拟VLSI神经网络的随机参数变化","authors":"Bertram E. Shi, T. Roska, L. Chua","doi":"10.1109/ICNN.1994.374453","DOIUrl":null,"url":null,"abstract":"This paper introduces an analytic method to determine the sensitivity to random parameter variations of analog VLSI neural network architectures for linear image filtering. The authors compare the robustness of several different circuit architectures for low pass filtering. This method can also determine which components within a particular architecture should specified the most precisely.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"10 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Random parameter variation in analog VLSI neural networks for linear image filtering\",\"authors\":\"Bertram E. Shi, T. Roska, L. Chua\",\"doi\":\"10.1109/ICNN.1994.374453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an analytic method to determine the sensitivity to random parameter variations of analog VLSI neural network architectures for linear image filtering. The authors compare the robustness of several different circuit architectures for low pass filtering. This method can also determine which components within a particular architecture should specified the most precisely.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"10 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Random parameter variation in analog VLSI neural networks for linear image filtering
This paper introduces an analytic method to determine the sensitivity to random parameter variations of analog VLSI neural network architectures for linear image filtering. The authors compare the robustness of several different circuit architectures for low pass filtering. This method can also determine which components within a particular architecture should specified the most precisely.<>