Anjan Chowdhury, S. Srinivasan, S. Bhowmick, Animesh Mukherjee, K. Ghosh
{"title":"基于图像阈值算法的百万尺度网络恒定社区识别","authors":"Anjan Chowdhury, S. Srinivasan, S. Bhowmick, Animesh Mukherjee, K. Ghosh","doi":"10.1145/3487351.3488350","DOIUrl":null,"url":null,"abstract":"Constant communities, i.e., groups of vertices that are always clustered together, independent of the community detection algorithm used, are necessary for reducing the inherent stochasticity of community detection results. Current methods for identifying constant communities require multiple runs of community detection algorithm(s). This process is extremely time consuming and not scalable to large networks. We propose a novel approach for finding the constant communities, by transforming the problem to a binary classification of edges. We apply the Otsu method from image thresholding to classify edges based on whether they are always within a community or not. Our algorithm does not require any explicit detection of communities and can thus scale to very large networks of the order of millions of vertices. Our results on real-world graphs show that our method is significantly faster and the constant communities produced have higher accuracy (as per F1 and NMI scores) than state-of-the-art baseline methods.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"402 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constant community identification in million scale networks using image thresholding algorithms\",\"authors\":\"Anjan Chowdhury, S. Srinivasan, S. Bhowmick, Animesh Mukherjee, K. Ghosh\",\"doi\":\"10.1145/3487351.3488350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constant communities, i.e., groups of vertices that are always clustered together, independent of the community detection algorithm used, are necessary for reducing the inherent stochasticity of community detection results. Current methods for identifying constant communities require multiple runs of community detection algorithm(s). This process is extremely time consuming and not scalable to large networks. We propose a novel approach for finding the constant communities, by transforming the problem to a binary classification of edges. We apply the Otsu method from image thresholding to classify edges based on whether they are always within a community or not. Our algorithm does not require any explicit detection of communities and can thus scale to very large networks of the order of millions of vertices. Our results on real-world graphs show that our method is significantly faster and the constant communities produced have higher accuracy (as per F1 and NMI scores) than state-of-the-art baseline methods.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"402 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3488350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constant community identification in million scale networks using image thresholding algorithms
Constant communities, i.e., groups of vertices that are always clustered together, independent of the community detection algorithm used, are necessary for reducing the inherent stochasticity of community detection results. Current methods for identifying constant communities require multiple runs of community detection algorithm(s). This process is extremely time consuming and not scalable to large networks. We propose a novel approach for finding the constant communities, by transforming the problem to a binary classification of edges. We apply the Otsu method from image thresholding to classify edges based on whether they are always within a community or not. Our algorithm does not require any explicit detection of communities and can thus scale to very large networks of the order of millions of vertices. Our results on real-world graphs show that our method is significantly faster and the constant communities produced have higher accuracy (as per F1 and NMI scores) than state-of-the-art baseline methods.