基于时间序列预测的软件5G核心网系统故障预测

Pousali Chakraborty, M. Corici, T. Magedanz
{"title":"基于时间序列预测的软件5G核心网系统故障预测","authors":"Pousali Chakraborty, M. Corici, T. Magedanz","doi":"10.1109/ICCWorkshops50388.2021.9473530","DOIUrl":null,"url":null,"abstract":"5G network is very flexible because of the two concepts Network Functions Virtualization (NFV) and the Software Defined Networks (SDN). There are various use cases for 5G technology and for different cases different configuration of the network will be needed. 5G Technology will bring intelligence within the network. The ability to support massive connectivity across diverse devices will result in enormous data volume within the 5G network. Continuous monitoring and traffic log analysis in such a complex architecture will not be sufficient to ensure availability and reliability within the network. The integration of data analytics within the 5G network can leverage the potential of automation. By introducing automation in the monitoring process better Quality of Services (QoS) can be achieved and analysing the network traffic load for better bandwidth utilization within the network. This article proposes a solution to integrate time series based analytics with 5G core and predicting any threats within the system which can lead to system failure. To validate the proposal Fraunhofer FOKUS Open5GCore toolkit is used.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"System Failure Prediction within Software 5G Core Networks using Time Series Forecasting\",\"authors\":\"Pousali Chakraborty, M. Corici, T. Magedanz\",\"doi\":\"10.1109/ICCWorkshops50388.2021.9473530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"5G network is very flexible because of the two concepts Network Functions Virtualization (NFV) and the Software Defined Networks (SDN). There are various use cases for 5G technology and for different cases different configuration of the network will be needed. 5G Technology will bring intelligence within the network. The ability to support massive connectivity across diverse devices will result in enormous data volume within the 5G network. Continuous monitoring and traffic log analysis in such a complex architecture will not be sufficient to ensure availability and reliability within the network. The integration of data analytics within the 5G network can leverage the potential of automation. By introducing automation in the monitoring process better Quality of Services (QoS) can be achieved and analysing the network traffic load for better bandwidth utilization within the network. This article proposes a solution to integrate time series based analytics with 5G core and predicting any threats within the system which can lead to system failure. To validate the proposal Fraunhofer FOKUS Open5GCore toolkit is used.\",\"PeriodicalId\":127186,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWorkshops50388.2021.9473530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于网络功能虚拟化(NFV)和软件定义网络(SDN)这两个概念,5G网络非常灵活。5G技术有各种各样的用例,不同的用例需要不同的网络配置。5G技术将为网络带来智能。支持跨各种设备的大规模连接的能力将导致5G网络中的巨大数据量。在如此复杂的体系结构中,持续的监控和流量日志分析将不足以确保网络中的可用性和可靠性。在5G网络中集成数据分析可以利用自动化的潜力。通过在监控过程中引入自动化,可以实现更好的服务质量(QoS),并分析网络流量负载,从而更好地利用网络内的带宽。本文提出了一种将基于时间序列的分析与5G核心集成并预测系统内可能导致系统故障的任何威胁的解决方案。为了验证该提案,使用了Fraunhofer FOKUS Open5GCore工具包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
System Failure Prediction within Software 5G Core Networks using Time Series Forecasting
5G network is very flexible because of the two concepts Network Functions Virtualization (NFV) and the Software Defined Networks (SDN). There are various use cases for 5G technology and for different cases different configuration of the network will be needed. 5G Technology will bring intelligence within the network. The ability to support massive connectivity across diverse devices will result in enormous data volume within the 5G network. Continuous monitoring and traffic log analysis in such a complex architecture will not be sufficient to ensure availability and reliability within the network. The integration of data analytics within the 5G network can leverage the potential of automation. By introducing automation in the monitoring process better Quality of Services (QoS) can be achieved and analysing the network traffic load for better bandwidth utilization within the network. This article proposes a solution to integrate time series based analytics with 5G core and predicting any threats within the system which can lead to system failure. To validate the proposal Fraunhofer FOKUS Open5GCore toolkit is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BML: An Efficient and Versatile Tool for BGP Dataset Collection Efficient and Privacy-Preserving Contact Tracing System for Covid-19 using Blockchain MEC-Based Energy-Aware Distributed Feature Extraction for mHealth Applications with Strict Latency Requirements Distributed Multi-Agent Learning for Service Function Chain Partial Offloading at the Edge A Deep Neural Network Based Environment Sensing in the Presence of Jammers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1