多优化连接器PID控制自动调压器的设计与性能对比分析

B. K. Sahu, P. Mohanty, S. Panda, S. Kar, N. Mishra
{"title":"多优化连接器PID控制自动调压器的设计与性能对比分析","authors":"B. K. Sahu, P. Mohanty, S. Panda, S. Kar, N. Mishra","doi":"10.1109/APCET.2012.6302014","DOIUrl":null,"url":null,"abstract":"This paper deals with the design of Proportional, Integral, and Derivative (PID) controller to an Automatic Voltage Regulator (AVR) tuned by recently developed Simplified Particle Swarm Optimization algorithm so called, Many Optimizing Liaisons (MOL) algorithm. MOL simplifies the original PSO by randomly choosing the particle to update, instead of iterating over the entire swarm thus eliminating the particle's best known position and making it easier to tune the behavioural parameters. The proposed method is compared with the earlier used PSO algorithm. For performance studies; Transient response analysis, Bode plot analysis and Root locus analysis are explained in details. The robustness analysis is done by varying the time constants of amplifier, exciter, generator & sensor in the range of -50% to + 50% with a step size of 25% respectively. The results of these analyses using the MOL algorithm are found to be better with respect to the analysis of the PID controller using PSO algorithm.","PeriodicalId":184844,"journal":{"name":"2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Design and comparative performance analysis of PID controlled automatic voltage regulator tuned by many optimizing liaisons\",\"authors\":\"B. K. Sahu, P. Mohanty, S. Panda, S. Kar, N. Mishra\",\"doi\":\"10.1109/APCET.2012.6302014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the design of Proportional, Integral, and Derivative (PID) controller to an Automatic Voltage Regulator (AVR) tuned by recently developed Simplified Particle Swarm Optimization algorithm so called, Many Optimizing Liaisons (MOL) algorithm. MOL simplifies the original PSO by randomly choosing the particle to update, instead of iterating over the entire swarm thus eliminating the particle's best known position and making it easier to tune the behavioural parameters. The proposed method is compared with the earlier used PSO algorithm. For performance studies; Transient response analysis, Bode plot analysis and Root locus analysis are explained in details. The robustness analysis is done by varying the time constants of amplifier, exciter, generator & sensor in the range of -50% to + 50% with a step size of 25% respectively. The results of these analyses using the MOL algorithm are found to be better with respect to the analysis of the PID controller using PSO algorithm.\",\"PeriodicalId\":184844,\"journal\":{\"name\":\"2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCET.2012.6302014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCET.2012.6302014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文研究了采用简化粒子群优化算法(Many Optimization Liaisons, MOL)对自动电压调节器(AVR)进行调节的比例、积分和导数(PID)控制器的设计。MOL通过随机选择要更新的粒子来简化原始PSO,而不是在整个群体中迭代,从而消除了粒子最熟悉的位置,使其更容易调整行为参数。将该方法与已有的粒子群算法进行了比较。进行性能研究;对瞬态响应分析、波德图分析和根位点分析进行了详细说明。鲁棒性分析是通过改变放大器、励磁器、发电机和传感器的时间常数在-50%到+ 50%的范围内,步长分别为25%来完成的。使用MOL算法的分析结果比使用PSO算法的PID控制器的分析结果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and comparative performance analysis of PID controlled automatic voltage regulator tuned by many optimizing liaisons
This paper deals with the design of Proportional, Integral, and Derivative (PID) controller to an Automatic Voltage Regulator (AVR) tuned by recently developed Simplified Particle Swarm Optimization algorithm so called, Many Optimizing Liaisons (MOL) algorithm. MOL simplifies the original PSO by randomly choosing the particle to update, instead of iterating over the entire swarm thus eliminating the particle's best known position and making it easier to tune the behavioural parameters. The proposed method is compared with the earlier used PSO algorithm. For performance studies; Transient response analysis, Bode plot analysis and Root locus analysis are explained in details. The robustness analysis is done by varying the time constants of amplifier, exciter, generator & sensor in the range of -50% to + 50% with a step size of 25% respectively. The results of these analyses using the MOL algorithm are found to be better with respect to the analysis of the PID controller using PSO algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective approach for ATC enhancement with FACTS device - A case study Hybrid controller for inverted pendulum Congestion management in a pool model with bilateral contract by generation rescheduling based on PSO A novel linear controller for grid connected doubly fed induction generator (DFIG) Interval type-2 fuzzy logic controller as a power system stabilizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1