{"title":"列架构——一种用于事件驱动的2D像素成像仪的新架构","authors":"J. Millaud, D. Nygren","doi":"10.1109/NSSMIC.1995.504236","DOIUrl":null,"url":null,"abstract":"We describe an electronic architecture for two-dimensional pixel arrays that permits very large increases in rate capability for event- or data-driven applications relative to conventional x-y architectures. The column architecture also permits more efficient use of silicon area in applications requiring local buffering, frameless data acquisition, and it avoids entirely the problem of ambiguities that may arise in conventional approaches. Two examples of active implementation are described: high energy physics and protein crystallography.","PeriodicalId":409998,"journal":{"name":"1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The column architecture-a novel architecture for event driven 2D pixel imagers\",\"authors\":\"J. Millaud, D. Nygren\",\"doi\":\"10.1109/NSSMIC.1995.504236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an electronic architecture for two-dimensional pixel arrays that permits very large increases in rate capability for event- or data-driven applications relative to conventional x-y architectures. The column architecture also permits more efficient use of silicon area in applications requiring local buffering, frameless data acquisition, and it avoids entirely the problem of ambiguities that may arise in conventional approaches. Two examples of active implementation are described: high energy physics and protein crystallography.\",\"PeriodicalId\":409998,\"journal\":{\"name\":\"1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.1995.504236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.1995.504236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The column architecture-a novel architecture for event driven 2D pixel imagers
We describe an electronic architecture for two-dimensional pixel arrays that permits very large increases in rate capability for event- or data-driven applications relative to conventional x-y architectures. The column architecture also permits more efficient use of silicon area in applications requiring local buffering, frameless data acquisition, and it avoids entirely the problem of ambiguities that may arise in conventional approaches. Two examples of active implementation are described: high energy physics and protein crystallography.