利用机器学习检测光伏系统中的隐藏攻击者

S. Sourav, P. Biswas, Binbin Chen, D. Mashima
{"title":"利用机器学习检测光伏系统中的隐藏攻击者","authors":"S. Sourav, P. Biswas, Binbin Chen, D. Mashima","doi":"10.1109/SmartGridComm52983.2022.9960965","DOIUrl":null,"url":null,"abstract":"In modern smart grids, the proliferation of communication enabled distributed energy resource (DER) systems has increased the surface of possible cyber-physical attacks. Attacks originating from the distributed edge devices of DER system, such as photovoltaic (PV) system, is often difficult to detect. An attacker may change the control configurations or various setpoints of the PV inverters to destabilize the power grid, damage devices, or for the purpose of economic gain. A more powerful attacker may even manipulate the PV system metering data transmitted for remote monitoring, so that (s)he can remain hidden. In this paper, we consider a case where PV systems operating in different control modes can be simultaneously attacked and the attacker has the ability to manipulate individual PV bus measurements to avoid detection. We show that even in such a scenario, with just the aggregated measurements (that the attacker cannot manipulate), machine learning (ML) techniques are able to detect the attack in a fast and accurate manner. We use a standard radial distribution network, together with real smart home electricity consumption data and solar power data in our experimental setup. We test the performance of several ML algorithms to detect attacks on the PV system. Our detailed evaluations show that the proposed intrusion detection system (IDS) is highly effective and efficient in detecting attacks on PV inverter control modes.","PeriodicalId":252202,"journal":{"name":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detecting Hidden Attackers in Photovoltaic Systems Using Machine Learning\",\"authors\":\"S. Sourav, P. Biswas, Binbin Chen, D. Mashima\",\"doi\":\"10.1109/SmartGridComm52983.2022.9960965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern smart grids, the proliferation of communication enabled distributed energy resource (DER) systems has increased the surface of possible cyber-physical attacks. Attacks originating from the distributed edge devices of DER system, such as photovoltaic (PV) system, is often difficult to detect. An attacker may change the control configurations or various setpoints of the PV inverters to destabilize the power grid, damage devices, or for the purpose of economic gain. A more powerful attacker may even manipulate the PV system metering data transmitted for remote monitoring, so that (s)he can remain hidden. In this paper, we consider a case where PV systems operating in different control modes can be simultaneously attacked and the attacker has the ability to manipulate individual PV bus measurements to avoid detection. We show that even in such a scenario, with just the aggregated measurements (that the attacker cannot manipulate), machine learning (ML) techniques are able to detect the attack in a fast and accurate manner. We use a standard radial distribution network, together with real smart home electricity consumption data and solar power data in our experimental setup. We test the performance of several ML algorithms to detect attacks on the PV system. Our detailed evaluations show that the proposed intrusion detection system (IDS) is highly effective and efficient in detecting attacks on PV inverter control modes.\",\"PeriodicalId\":252202,\"journal\":{\"name\":\"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm52983.2022.9960965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm52983.2022.9960965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在现代智能电网中,通信支持的分布式能源(DER)系统的扩散增加了可能的网络物理攻击的表面。来自分布式分布式分布式分布式边缘设备(如光伏系统)的攻击往往难以检测。攻击者可以改变光伏逆变器的控制配置或各种设定值,以破坏电网稳定,损坏设备,或以经济利益为目的。更强大的攻击者甚至可以操纵为远程监控而传输的光伏系统计量数据,这样他就可以隐藏起来。在本文中,我们考虑了在不同控制模式下运行的光伏系统可以同时被攻击的情况,攻击者有能力操纵单个PV总线测量以避免被检测。我们表明,即使在这种情况下,仅使用聚合测量(攻击者无法操纵),机器学习(ML)技术也能够以快速准确的方式检测攻击。在我们的实验设置中,我们使用了标准的径向配电网,并结合了真实的智能家居用电量数据和太阳能发电数据。我们测试了几种机器学习算法的性能来检测对PV系统的攻击。我们的详细评估表明,所提出的入侵检测系统(IDS)在检测对光伏逆变器控制模式的攻击方面是非常有效和高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Hidden Attackers in Photovoltaic Systems Using Machine Learning
In modern smart grids, the proliferation of communication enabled distributed energy resource (DER) systems has increased the surface of possible cyber-physical attacks. Attacks originating from the distributed edge devices of DER system, such as photovoltaic (PV) system, is often difficult to detect. An attacker may change the control configurations or various setpoints of the PV inverters to destabilize the power grid, damage devices, or for the purpose of economic gain. A more powerful attacker may even manipulate the PV system metering data transmitted for remote monitoring, so that (s)he can remain hidden. In this paper, we consider a case where PV systems operating in different control modes can be simultaneously attacked and the attacker has the ability to manipulate individual PV bus measurements to avoid detection. We show that even in such a scenario, with just the aggregated measurements (that the attacker cannot manipulate), machine learning (ML) techniques are able to detect the attack in a fast and accurate manner. We use a standard radial distribution network, together with real smart home electricity consumption data and solar power data in our experimental setup. We test the performance of several ML algorithms to detect attacks on the PV system. Our detailed evaluations show that the proposed intrusion detection system (IDS) is highly effective and efficient in detecting attacks on PV inverter control modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scheduling Electric Vehicle Fleets as a Virtual Battery under Uncertainty using Quantile Forecasts Graph Neural Network Based Prediction of Data Traffic in Cyber-Physical Smart Power Grids A Digital Twin Integrated Cyber-physical Systems for Community Energy Trading Analysis of Message Authentication Solutions for IEC 61850 in Substation Automation Systems Smart Home/Office Energy Management based on Individual Data Analysis through IoT Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1