{"title":"基于多集的社会技术系统抵御自然灾害能力评估","authors":"I. Sheremet","doi":"10.5772/INTECHOPEN.83508","DOIUrl":null,"url":null,"abstract":"The chapter describes multiset-based approach to the assessment of resilience/ vulnerability of the distributed sociotechnological systems (DSTS) to natural hazards (NH). DSTS contain highly interconnected and intersected consuming and producing segments, and also resource base (RB), providing their existence and operation. NH impacts may destroy some local elements of these segments, as well as some parts of RB, thus initiating multiple chain effects, leading to negative consequences far away from the NH local strikes. To assess DSTS resilience to such impacts, multigrammatical representation of DSTS is used. A criterion of DSTS sustainability to NH, being generalization of similar criterion, known for industrial (producing) systems, is proposed. Application of this criterion to critical infrastructures is considered, as well as solution of the reverse problem, concerning subsystems of DSTS, which may stay functional after NH impact.","PeriodicalId":436164,"journal":{"name":"Natural Hazards - Risk, Exposure, Response, and Resilience","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multiset-Based Assessment of Resilience of Sociotechnological Systems to Natural Hazards\",\"authors\":\"I. Sheremet\",\"doi\":\"10.5772/INTECHOPEN.83508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chapter describes multiset-based approach to the assessment of resilience/ vulnerability of the distributed sociotechnological systems (DSTS) to natural hazards (NH). DSTS contain highly interconnected and intersected consuming and producing segments, and also resource base (RB), providing their existence and operation. NH impacts may destroy some local elements of these segments, as well as some parts of RB, thus initiating multiple chain effects, leading to negative consequences far away from the NH local strikes. To assess DSTS resilience to such impacts, multigrammatical representation of DSTS is used. A criterion of DSTS sustainability to NH, being generalization of similar criterion, known for industrial (producing) systems, is proposed. Application of this criterion to critical infrastructures is considered, as well as solution of the reverse problem, concerning subsystems of DSTS, which may stay functional after NH impact.\",\"PeriodicalId\":436164,\"journal\":{\"name\":\"Natural Hazards - Risk, Exposure, Response, and Resilience\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Hazards - Risk, Exposure, Response, and Resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.83508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards - Risk, Exposure, Response, and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.83508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiset-Based Assessment of Resilience of Sociotechnological Systems to Natural Hazards
The chapter describes multiset-based approach to the assessment of resilience/ vulnerability of the distributed sociotechnological systems (DSTS) to natural hazards (NH). DSTS contain highly interconnected and intersected consuming and producing segments, and also resource base (RB), providing their existence and operation. NH impacts may destroy some local elements of these segments, as well as some parts of RB, thus initiating multiple chain effects, leading to negative consequences far away from the NH local strikes. To assess DSTS resilience to such impacts, multigrammatical representation of DSTS is used. A criterion of DSTS sustainability to NH, being generalization of similar criterion, known for industrial (producing) systems, is proposed. Application of this criterion to critical infrastructures is considered, as well as solution of the reverse problem, concerning subsystems of DSTS, which may stay functional after NH impact.