{"title":"第13章。呼吸系统的微生理模型","authors":"D. Huh","doi":"10.1039/9781788012683-00279","DOIUrl":null,"url":null,"abstract":"The lung is an essential organ that shows remarkable complexity in its structure, environment, and function. Mimicking this dynamic and complex organ in experimental model systems remains a major challenge in biomedical research. Here we review recent research efforts directed towards leveraging microfluidic cell culture techniques to develop microengineered in vitro models of the respiratory system. This chapter will begin by introducing early studies demonstrating the feasibility of modeling the dynamic environment and complex physiological function of the human lung in microengineered cell culture devices. We will then provide recent examples of advanced lung-on-a-chip systems designed to recapitulate various physiological and pathophysiological processes in the respiratory system. Finally, opportunities and challenges for lung-on-a-chip technology will be discussed.","PeriodicalId":433412,"journal":{"name":"Biomaterials Science Series","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chapter 13. Microphysiological Models of the Respiratory System\",\"authors\":\"D. Huh\",\"doi\":\"10.1039/9781788012683-00279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lung is an essential organ that shows remarkable complexity in its structure, environment, and function. Mimicking this dynamic and complex organ in experimental model systems remains a major challenge in biomedical research. Here we review recent research efforts directed towards leveraging microfluidic cell culture techniques to develop microengineered in vitro models of the respiratory system. This chapter will begin by introducing early studies demonstrating the feasibility of modeling the dynamic environment and complex physiological function of the human lung in microengineered cell culture devices. We will then provide recent examples of advanced lung-on-a-chip systems designed to recapitulate various physiological and pathophysiological processes in the respiratory system. Finally, opportunities and challenges for lung-on-a-chip technology will be discussed.\",\"PeriodicalId\":433412,\"journal\":{\"name\":\"Biomaterials Science Series\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781788012683-00279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788012683-00279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chapter 13. Microphysiological Models of the Respiratory System
The lung is an essential organ that shows remarkable complexity in its structure, environment, and function. Mimicking this dynamic and complex organ in experimental model systems remains a major challenge in biomedical research. Here we review recent research efforts directed towards leveraging microfluidic cell culture techniques to develop microengineered in vitro models of the respiratory system. This chapter will begin by introducing early studies demonstrating the feasibility of modeling the dynamic environment and complex physiological function of the human lung in microengineered cell culture devices. We will then provide recent examples of advanced lung-on-a-chip systems designed to recapitulate various physiological and pathophysiological processes in the respiratory system. Finally, opportunities and challenges for lung-on-a-chip technology will be discussed.