基于概率序列核的鸟类活动快速检测

Anshul Thakur, R. Jyothi, Padmanabhan Rajan, A. D. Dileep
{"title":"基于概率序列核的鸟类活动快速检测","authors":"Anshul Thakur, R. Jyothi, Padmanabhan Rajan, A. D. Dileep","doi":"10.23919/EUSIPCO.2017.8081510","DOIUrl":null,"url":null,"abstract":"Bird activity detection is the task of determining if a bird sound is present in a given audio recording. This paper describes a bird activity detector which utilises a support vector machine (SVM) with a dynamic kernel. Dynamic kernels are used to process sets of feature vectors having different cardinalities. Probabilistic sequence kernel (PSK) is one such dynamic kernel. The PSK converts a set of feature vectors from a recording into a fixed-length vector. We propose to use a variant of PSK in this work. Before computing the fixed-length vector, cepstral mean and variance normalisation and short-time Gaussianization is performed on the feature vectors. This reduces environment mismatch between different recordings. Additionally, we also demonstrate a simple procedure to speed up the proposed method by reducing the size of fixed-length vector. A speedup of almost 70% is observed, with a very small drop in accuracy. The proposed method is also compared with a random forest classifier and is shown to outperform it.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Rapid bird activity detection using probabilistic sequence kernels\",\"authors\":\"Anshul Thakur, R. Jyothi, Padmanabhan Rajan, A. D. Dileep\",\"doi\":\"10.23919/EUSIPCO.2017.8081510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bird activity detection is the task of determining if a bird sound is present in a given audio recording. This paper describes a bird activity detector which utilises a support vector machine (SVM) with a dynamic kernel. Dynamic kernels are used to process sets of feature vectors having different cardinalities. Probabilistic sequence kernel (PSK) is one such dynamic kernel. The PSK converts a set of feature vectors from a recording into a fixed-length vector. We propose to use a variant of PSK in this work. Before computing the fixed-length vector, cepstral mean and variance normalisation and short-time Gaussianization is performed on the feature vectors. This reduces environment mismatch between different recordings. Additionally, we also demonstrate a simple procedure to speed up the proposed method by reducing the size of fixed-length vector. A speedup of almost 70% is observed, with a very small drop in accuracy. The proposed method is also compared with a random forest classifier and is shown to outperform it.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

鸟类活动检测的任务是确定在给定的音频记录中是否存在鸟类的声音。本文介绍了一种基于动态核的支持向量机的鸟类活动检测器。动态核用于处理具有不同基数的特征向量集。概率序列核(PSK)就是一种动态核。PSK将记录中的一组特征向量转换为固定长度的向量。我们建议在这项工作中使用PSK的一种变体。在计算固定长度向量之前,对特征向量进行倒谱均值和方差归一化和短时高斯化。这减少了不同录音之间的环境不匹配。此外,我们还演示了一个简单的过程,通过减少固定长度向量的大小来加快所提出的方法。可以观察到几乎70%的加速,而精度却有很小的下降。该方法还与随机森林分类器进行了比较,结果表明其优于随机森林分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid bird activity detection using probabilistic sequence kernels
Bird activity detection is the task of determining if a bird sound is present in a given audio recording. This paper describes a bird activity detector which utilises a support vector machine (SVM) with a dynamic kernel. Dynamic kernels are used to process sets of feature vectors having different cardinalities. Probabilistic sequence kernel (PSK) is one such dynamic kernel. The PSK converts a set of feature vectors from a recording into a fixed-length vector. We propose to use a variant of PSK in this work. Before computing the fixed-length vector, cepstral mean and variance normalisation and short-time Gaussianization is performed on the feature vectors. This reduces environment mismatch between different recordings. Additionally, we also demonstrate a simple procedure to speed up the proposed method by reducing the size of fixed-length vector. A speedup of almost 70% is observed, with a very small drop in accuracy. The proposed method is also compared with a random forest classifier and is shown to outperform it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1