Cory J. C. Brett, R. DiPietro, D. Manolakis, V. Ingle
{"title":"高光谱化学检测算法的高效实现","authors":"Cory J. C. Brett, R. DiPietro, D. Manolakis, V. Ingle","doi":"10.1117/12.2028562","DOIUrl":null,"url":null,"abstract":"Many military and civilian applications depend on the ability to remotely sense chemical clouds using hyperspectral imagers, from detecting small but lethal concentrations of chemical warfare agents to mapping plumes in the aftermath of natural disasters. Real-time operation is critical in these applications but becomes diffcult to achieve as the number of chemicals we search for increases. In this paper, we present efficient CPU and GPU implementations of matched-filter based algorithms so that real-time operation can be maintained with higher chemical-signature counts. The optimized C++ implementations show between 3x and 9x speedup over vectorized MATLAB implementations.","PeriodicalId":344928,"journal":{"name":"Optics/Photonics in Security and Defence","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient implementations of hyperspectral chemical-detection algorithms\",\"authors\":\"Cory J. C. Brett, R. DiPietro, D. Manolakis, V. Ingle\",\"doi\":\"10.1117/12.2028562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many military and civilian applications depend on the ability to remotely sense chemical clouds using hyperspectral imagers, from detecting small but lethal concentrations of chemical warfare agents to mapping plumes in the aftermath of natural disasters. Real-time operation is critical in these applications but becomes diffcult to achieve as the number of chemicals we search for increases. In this paper, we present efficient CPU and GPU implementations of matched-filter based algorithms so that real-time operation can be maintained with higher chemical-signature counts. The optimized C++ implementations show between 3x and 9x speedup over vectorized MATLAB implementations.\",\"PeriodicalId\":344928,\"journal\":{\"name\":\"Optics/Photonics in Security and Defence\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics/Photonics in Security and Defence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2028562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics/Photonics in Security and Defence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2028562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient implementations of hyperspectral chemical-detection algorithms
Many military and civilian applications depend on the ability to remotely sense chemical clouds using hyperspectral imagers, from detecting small but lethal concentrations of chemical warfare agents to mapping plumes in the aftermath of natural disasters. Real-time operation is critical in these applications but becomes diffcult to achieve as the number of chemicals we search for increases. In this paper, we present efficient CPU and GPU implementations of matched-filter based algorithms so that real-time operation can be maintained with higher chemical-signature counts. The optimized C++ implementations show between 3x and 9x speedup over vectorized MATLAB implementations.