{"title":"GECCO 2014进化多目标优化教程","authors":"D. Brockhoff","doi":"10.1145/2598394.2605339","DOIUrl":null,"url":null,"abstract":"Many optimization problems are multiobjective in nature in the sense that multiple, conflicting criteria need to be optimized simultaneously. Due to the conflict between objectives, usually, no single optimal solution exists. Instead, the optimum corresponds to a set of so-called Pareto-optimal solutions for which no other solution has better function values in all objectives. Evolutionary Multiobjective Optimization (EMO) algorithms are widely used in practice for solving multiobjective optimization problems due to several reasons. As stochastic blackbox algorithms, EMO approaches allow to tackle problems with nonlinear, nondifferentiable, or noisy objective functions. As set-based algorithms, they allow to compute or approximate the full set of Pareto-optimal solutions in one algorithm run---opposed to classical solution-based techniques from the multicriteria decision making (MCDM) field. Using EMO approaches in practice has two other advantages: they allow to learn about a problem formulation, for example, by automatically revealing common design principles among (Pareto-optimal) solutions (innovization) and it has been shown that certain single-objective problems become easier to solve with randomized search heuristics if the problem is reformulated as a multiobjective one (multiobjectivization). This tutorial aims at giving a broad introduction to the EMO field and at presenting some of its recent research results in more detail. More specifically, we are going to (i) introduce the basic principles of EMO algorithms in comparison to classical solution-based approaches, (ii) show a few practical examples which motivate the use of EMO in terms of the mentioned innovization and multiobjectivization principles, and (iii) present a general overview of state-of-the-art algorithms and techniques. Moreover, we will present some of the most important research results in areas such as indicator-based EMO, preference articulation, and performance assessment. Though classified as introductory, this tutorial is intended for both novices and regular users of EMO. Those without any knowledge will learn about the foundations of multiobjective optimization and the basic working principles of state-of-the-art EMO algorithms. Open questions, presented throughout the tutorial, can serve for all participants as a starting point for future research and/or discussions during the conference.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GECCO 2014 tutorial on evolutionary multiobjective optimization\",\"authors\":\"D. Brockhoff\",\"doi\":\"10.1145/2598394.2605339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many optimization problems are multiobjective in nature in the sense that multiple, conflicting criteria need to be optimized simultaneously. Due to the conflict between objectives, usually, no single optimal solution exists. Instead, the optimum corresponds to a set of so-called Pareto-optimal solutions for which no other solution has better function values in all objectives. Evolutionary Multiobjective Optimization (EMO) algorithms are widely used in practice for solving multiobjective optimization problems due to several reasons. As stochastic blackbox algorithms, EMO approaches allow to tackle problems with nonlinear, nondifferentiable, or noisy objective functions. As set-based algorithms, they allow to compute or approximate the full set of Pareto-optimal solutions in one algorithm run---opposed to classical solution-based techniques from the multicriteria decision making (MCDM) field. Using EMO approaches in practice has two other advantages: they allow to learn about a problem formulation, for example, by automatically revealing common design principles among (Pareto-optimal) solutions (innovization) and it has been shown that certain single-objective problems become easier to solve with randomized search heuristics if the problem is reformulated as a multiobjective one (multiobjectivization). This tutorial aims at giving a broad introduction to the EMO field and at presenting some of its recent research results in more detail. More specifically, we are going to (i) introduce the basic principles of EMO algorithms in comparison to classical solution-based approaches, (ii) show a few practical examples which motivate the use of EMO in terms of the mentioned innovization and multiobjectivization principles, and (iii) present a general overview of state-of-the-art algorithms and techniques. Moreover, we will present some of the most important research results in areas such as indicator-based EMO, preference articulation, and performance assessment. Though classified as introductory, this tutorial is intended for both novices and regular users of EMO. Those without any knowledge will learn about the foundations of multiobjective optimization and the basic working principles of state-of-the-art EMO algorithms. Open questions, presented throughout the tutorial, can serve for all participants as a starting point for future research and/or discussions during the conference.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2605339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2605339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多优化问题本质上是多目标的,即需要同时优化多个相互冲突的准则。由于目标之间存在冲突,通常不存在单一的最优解。相反,最优对应于一组所谓的帕累托最优解,在这些解中,没有其他解在所有目标中都具有更好的函数值。由于多种原因,进化多目标优化算法在实践中被广泛应用于解决多目标优化问题。作为随机黑盒算法,EMO方法允许处理非线性、不可微或有噪声目标函数的问题。作为基于集合的算法,它们允许在一次算法运行中计算或近似完整的帕累托最优解集——与多标准决策(MCDM)领域的经典基于解的技术相反。在实践中使用EMO方法还有另外两个优点:它们允许学习问题的表述,例如,通过自动揭示(帕雷托最优)解决方案中的共同设计原则(创新),并且已经证明,如果将某些单目标问题重新表述为多目标问题(多目标化),则使用随机搜索启发式更容易解决。本教程旨在对EMO领域进行广泛的介绍,并更详细地介绍其最近的一些研究成果。更具体地说,我们将(i)介绍EMO算法的基本原理,与经典的基于解决方案的方法进行比较,(ii)展示一些实际的例子,这些例子激发了EMO在上述创新和多目标化原则方面的使用,以及(iii)对最先进的算法和技术进行概述。此外,我们将在基于指标的EMO、偏好表达和绩效评估等领域介绍一些最重要的研究成果。虽然被归类为介绍性教程,但本教程适用于EMO的新手和常规用户。那些没有任何知识的人将学习多目标优化的基础和最先进的EMO算法的基本工作原理。在整个教程中提出的开放性问题可以作为所有参与者在会议期间进行未来研究和/或讨论的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GECCO 2014 tutorial on evolutionary multiobjective optimization
Many optimization problems are multiobjective in nature in the sense that multiple, conflicting criteria need to be optimized simultaneously. Due to the conflict between objectives, usually, no single optimal solution exists. Instead, the optimum corresponds to a set of so-called Pareto-optimal solutions for which no other solution has better function values in all objectives. Evolutionary Multiobjective Optimization (EMO) algorithms are widely used in practice for solving multiobjective optimization problems due to several reasons. As stochastic blackbox algorithms, EMO approaches allow to tackle problems with nonlinear, nondifferentiable, or noisy objective functions. As set-based algorithms, they allow to compute or approximate the full set of Pareto-optimal solutions in one algorithm run---opposed to classical solution-based techniques from the multicriteria decision making (MCDM) field. Using EMO approaches in practice has two other advantages: they allow to learn about a problem formulation, for example, by automatically revealing common design principles among (Pareto-optimal) solutions (innovization) and it has been shown that certain single-objective problems become easier to solve with randomized search heuristics if the problem is reformulated as a multiobjective one (multiobjectivization). This tutorial aims at giving a broad introduction to the EMO field and at presenting some of its recent research results in more detail. More specifically, we are going to (i) introduce the basic principles of EMO algorithms in comparison to classical solution-based approaches, (ii) show a few practical examples which motivate the use of EMO in terms of the mentioned innovization and multiobjectivization principles, and (iii) present a general overview of state-of-the-art algorithms and techniques. Moreover, we will present some of the most important research results in areas such as indicator-based EMO, preference articulation, and performance assessment. Though classified as introductory, this tutorial is intended for both novices and regular users of EMO. Those without any knowledge will learn about the foundations of multiobjective optimization and the basic working principles of state-of-the-art EMO algorithms. Open questions, presented throughout the tutorial, can serve for all participants as a starting point for future research and/or discussions during the conference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1