Donghyun Kim, Orion Campbell, Junhyeok Ahn, L. Sentis, N. Paine
{"title":"粘弹性液冷作动器在足式系统动态运动控制中的应用研究","authors":"Donghyun Kim, Orion Campbell, Junhyeok Ahn, L. Sentis, N. Paine","doi":"10.1109/HUMANOIDS.2017.8246950","DOIUrl":null,"url":null,"abstract":"To significantly improve actuation technology for legged systems, we design, build, and empirically test the viscoelastic liquid cooled actuator (VLCA) for use in a robotic leg. Unlike existing actuators, VLCAs excel in the following five critical axes of performance, which are essential for dynamic motion control of practical legged robots: energy efficiency, power density, impact-resistance, position controllability, and force controllability. In this paper, we explain design details with respect to the five criteria, and present results from our extensive study of a variety of viscoelastic materials. Position controllability and power density are experimentally evaluated by demonstrating dynamic motion with a single leg testbed, custom-built using VLCAs. In the experiment, the testbed shows 6.1 rad/s maximum velocity and 240 Nm maximum torque while accurately executing the commanded motions.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Investigations of viscoelastic liquid cooled actuators applied for dynamic motion control of legged systems\",\"authors\":\"Donghyun Kim, Orion Campbell, Junhyeok Ahn, L. Sentis, N. Paine\",\"doi\":\"10.1109/HUMANOIDS.2017.8246950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To significantly improve actuation technology for legged systems, we design, build, and empirically test the viscoelastic liquid cooled actuator (VLCA) for use in a robotic leg. Unlike existing actuators, VLCAs excel in the following five critical axes of performance, which are essential for dynamic motion control of practical legged robots: energy efficiency, power density, impact-resistance, position controllability, and force controllability. In this paper, we explain design details with respect to the five criteria, and present results from our extensive study of a variety of viscoelastic materials. Position controllability and power density are experimentally evaluated by demonstrating dynamic motion with a single leg testbed, custom-built using VLCAs. In the experiment, the testbed shows 6.1 rad/s maximum velocity and 240 Nm maximum torque while accurately executing the commanded motions.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigations of viscoelastic liquid cooled actuators applied for dynamic motion control of legged systems
To significantly improve actuation technology for legged systems, we design, build, and empirically test the viscoelastic liquid cooled actuator (VLCA) for use in a robotic leg. Unlike existing actuators, VLCAs excel in the following five critical axes of performance, which are essential for dynamic motion control of practical legged robots: energy efficiency, power density, impact-resistance, position controllability, and force controllability. In this paper, we explain design details with respect to the five criteria, and present results from our extensive study of a variety of viscoelastic materials. Position controllability and power density are experimentally evaluated by demonstrating dynamic motion with a single leg testbed, custom-built using VLCAs. In the experiment, the testbed shows 6.1 rad/s maximum velocity and 240 Nm maximum torque while accurately executing the commanded motions.