{"title":"基于深度学习解耦方法的等效Q估计","authors":"L. Xu, Z. Gao, S. Hu, C. Li, J. Gao","doi":"10.3997/2214-4609.202112720","DOIUrl":null,"url":null,"abstract":"In seismic exploration, Q model estimation from post-stack seismic data is an important problem since this model is a key prerequisite for reservoir identification and improving the vertical resolution of seismic data. The effects of Q are mainly manifested amplitude reduction and phase distortion of seismic data. In order to obtain high-resolution seismic data to describe oil and gas reservoirs, many Q factor estimation methods have been proposed. These methods can be roughly divided into direct estimation methods and inversion methods. Direct estimation methods, such as logarithmic spectral ratio method, frequency shift method, etc., usually use the attributes of seismic data to estimate Q, but it usually has disadvantages such as poor stability, dependence on source wavelet type, and the need for piecewise estimation of multi-layer Q model (Tonn, 1991). In contrast, the inversion methods regard Q factor as a model parameter and use the inversion algorithm to obtain the dynamic Q curve with traveltime or depth, which improves the calculation efficiency and stability, such as a novel method for Q analysis on reflection seismic data (Wang, 2004). However, the reflectivity and Q factor simultaneously affects the waveform of post-stack seismic data, leading to the fact that the Q model cannot be independently estimated without providing an accurate reflectivity model. The general approach for solving this problem is to simultaneously estimate these two parameters in an alternative iteration way (Wang et al., 2016). However, since neither the Q factor nor the reflectivity has a good initial model, the approach has no convergence guarantee.","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalent Q Estimation Using a Deep-learning-based Decoupling Method\",\"authors\":\"L. Xu, Z. Gao, S. Hu, C. Li, J. Gao\",\"doi\":\"10.3997/2214-4609.202112720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In seismic exploration, Q model estimation from post-stack seismic data is an important problem since this model is a key prerequisite for reservoir identification and improving the vertical resolution of seismic data. The effects of Q are mainly manifested amplitude reduction and phase distortion of seismic data. In order to obtain high-resolution seismic data to describe oil and gas reservoirs, many Q factor estimation methods have been proposed. These methods can be roughly divided into direct estimation methods and inversion methods. Direct estimation methods, such as logarithmic spectral ratio method, frequency shift method, etc., usually use the attributes of seismic data to estimate Q, but it usually has disadvantages such as poor stability, dependence on source wavelet type, and the need for piecewise estimation of multi-layer Q model (Tonn, 1991). In contrast, the inversion methods regard Q factor as a model parameter and use the inversion algorithm to obtain the dynamic Q curve with traveltime or depth, which improves the calculation efficiency and stability, such as a novel method for Q analysis on reflection seismic data (Wang, 2004). However, the reflectivity and Q factor simultaneously affects the waveform of post-stack seismic data, leading to the fact that the Q model cannot be independently estimated without providing an accurate reflectivity model. The general approach for solving this problem is to simultaneously estimate these two parameters in an alternative iteration way (Wang et al., 2016). However, since neither the Q factor nor the reflectivity has a good initial model, the approach has no convergence guarantee.\",\"PeriodicalId\":143998,\"journal\":{\"name\":\"82nd EAGE Annual Conference & Exhibition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"82nd EAGE Annual Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.202112720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202112720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在地震勘探中,叠后地震数据的Q模型估计是一个重要的问题,因为该模型是储层识别和提高地震数据垂向分辨率的关键前提。Q的影响主要表现为地震资料的幅度降低和相位畸变。为了获得高分辨率的地震数据来描述油气储层,人们提出了许多Q因子估计方法。这些方法大致可分为直接估计方法和反演方法。直接估计方法,如对数谱比法、频移法等,通常利用地震资料的属性来估计Q,但通常存在稳定性差、依赖源小波类型、需要对多层Q模型进行分段估计等缺点(Tonn, 1991)。而反演方法以Q因子为模型参数,利用反演算法获得随走时或深度变化的动态Q曲线,提高了计算效率和稳定性,如对反射地震资料进行Q分析的新方法(Wang, 2004)。然而,反射率和Q因子同时影响叠后地震数据的波形,导致如果不能提供准确的反射率模型,就无法独立估计Q模型。解决该问题的一般方法是以替代迭代的方式同时估计这两个参数(Wang et al., 2016)。然而,由于Q因子和反射率都没有一个好的初始模型,该方法没有收敛性保证。
Equivalent Q Estimation Using a Deep-learning-based Decoupling Method
In seismic exploration, Q model estimation from post-stack seismic data is an important problem since this model is a key prerequisite for reservoir identification and improving the vertical resolution of seismic data. The effects of Q are mainly manifested amplitude reduction and phase distortion of seismic data. In order to obtain high-resolution seismic data to describe oil and gas reservoirs, many Q factor estimation methods have been proposed. These methods can be roughly divided into direct estimation methods and inversion methods. Direct estimation methods, such as logarithmic spectral ratio method, frequency shift method, etc., usually use the attributes of seismic data to estimate Q, but it usually has disadvantages such as poor stability, dependence on source wavelet type, and the need for piecewise estimation of multi-layer Q model (Tonn, 1991). In contrast, the inversion methods regard Q factor as a model parameter and use the inversion algorithm to obtain the dynamic Q curve with traveltime or depth, which improves the calculation efficiency and stability, such as a novel method for Q analysis on reflection seismic data (Wang, 2004). However, the reflectivity and Q factor simultaneously affects the waveform of post-stack seismic data, leading to the fact that the Q model cannot be independently estimated without providing an accurate reflectivity model. The general approach for solving this problem is to simultaneously estimate these two parameters in an alternative iteration way (Wang et al., 2016). However, since neither the Q factor nor the reflectivity has a good initial model, the approach has no convergence guarantee.