{"title":"一种改进的人工蜂群聚类算法","authors":"Qiuhan Tan, Hejun Wu, Biao Hu, Xingcheng Liu","doi":"10.1145/2598394.2598464","DOIUrl":null,"url":null,"abstract":"Artificial Bee Colony (ABC) algorithm, which was initially proposed for numerical function optimization, has been increasingly used for clustering. However, when it is directly applied to clustering, the performance of ABC is lower than expected. This paper proposes an improved ABC algorithm for clustering, denoted as EABC. EABC uses a key initialization method to accommodate the special solution space of clustering. Experimental results show that the evaluation of clustering is significantly improved and the latency of clustering is sharply reduced. Furthermore, EABC outperforms two ABC variants in clustering benchmark data sets.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An improved artificial bee colony algorithm for clustering\",\"authors\":\"Qiuhan Tan, Hejun Wu, Biao Hu, Xingcheng Liu\",\"doi\":\"10.1145/2598394.2598464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Bee Colony (ABC) algorithm, which was initially proposed for numerical function optimization, has been increasingly used for clustering. However, when it is directly applied to clustering, the performance of ABC is lower than expected. This paper proposes an improved ABC algorithm for clustering, denoted as EABC. EABC uses a key initialization method to accommodate the special solution space of clustering. Experimental results show that the evaluation of clustering is significantly improved and the latency of clustering is sharply reduced. Furthermore, EABC outperforms two ABC variants in clustering benchmark data sets.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An improved artificial bee colony algorithm for clustering
Artificial Bee Colony (ABC) algorithm, which was initially proposed for numerical function optimization, has been increasingly used for clustering. However, when it is directly applied to clustering, the performance of ABC is lower than expected. This paper proposes an improved ABC algorithm for clustering, denoted as EABC. EABC uses a key initialization method to accommodate the special solution space of clustering. Experimental results show that the evaluation of clustering is significantly improved and the latency of clustering is sharply reduced. Furthermore, EABC outperforms two ABC variants in clustering benchmark data sets.