{"title":"一种具有环境感知传感的集成可穿戴式震颤抑制机器人","authors":"Denis Huen, Jindong Liu, Benny P. L. Lo","doi":"10.1109/BSN.2016.7516280","DOIUrl":null,"url":null,"abstract":"Tremor is a neurological disorder which can significantly impede the daily functions of patients. The available treatments for patients with tremor are mainly pharmacotherapy and neurosurgery, but these treatments often have side effects. A wearable exoskeleton can potentially provide the assistance needed for patients with Parkinsonian or essential tremor to carry out daily activities and enable independent living. This paper presents the design and development of a 3D printed lightweight tremor suppression wearable exoskeleton. One of the major technical challenges for wearable robot is to maintain long battery life meanwhile miniature in size for practical use. This paper proposes an integrated approach where context aware Body Sensor Networks (BSN) sensors are incorporated to characterize voluntary and tremor movement, and detect activities of daily life (ADL). With the contextual information, the system can determine the intention of the user, optimize its control and minimize its power consumption by providing the necessary suppression only when needed. The preliminary result has shown that the wearable robot prototype can reduce the amplitude of simulated tremor by around 77%, and accurately identify different ADL with accuracy above 70%.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"An integrated wearable robot for tremor suppression with context aware sensing\",\"authors\":\"Denis Huen, Jindong Liu, Benny P. L. Lo\",\"doi\":\"10.1109/BSN.2016.7516280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tremor is a neurological disorder which can significantly impede the daily functions of patients. The available treatments for patients with tremor are mainly pharmacotherapy and neurosurgery, but these treatments often have side effects. A wearable exoskeleton can potentially provide the assistance needed for patients with Parkinsonian or essential tremor to carry out daily activities and enable independent living. This paper presents the design and development of a 3D printed lightweight tremor suppression wearable exoskeleton. One of the major technical challenges for wearable robot is to maintain long battery life meanwhile miniature in size for practical use. This paper proposes an integrated approach where context aware Body Sensor Networks (BSN) sensors are incorporated to characterize voluntary and tremor movement, and detect activities of daily life (ADL). With the contextual information, the system can determine the intention of the user, optimize its control and minimize its power consumption by providing the necessary suppression only when needed. The preliminary result has shown that the wearable robot prototype can reduce the amplitude of simulated tremor by around 77%, and accurately identify different ADL with accuracy above 70%.\",\"PeriodicalId\":205735,\"journal\":{\"name\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2016.7516280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An integrated wearable robot for tremor suppression with context aware sensing
Tremor is a neurological disorder which can significantly impede the daily functions of patients. The available treatments for patients with tremor are mainly pharmacotherapy and neurosurgery, but these treatments often have side effects. A wearable exoskeleton can potentially provide the assistance needed for patients with Parkinsonian or essential tremor to carry out daily activities and enable independent living. This paper presents the design and development of a 3D printed lightweight tremor suppression wearable exoskeleton. One of the major technical challenges for wearable robot is to maintain long battery life meanwhile miniature in size for practical use. This paper proposes an integrated approach where context aware Body Sensor Networks (BSN) sensors are incorporated to characterize voluntary and tremor movement, and detect activities of daily life (ADL). With the contextual information, the system can determine the intention of the user, optimize its control and minimize its power consumption by providing the necessary suppression only when needed. The preliminary result has shown that the wearable robot prototype can reduce the amplitude of simulated tremor by around 77%, and accurately identify different ADL with accuracy above 70%.