一种具有环境感知传感的集成可穿戴式震颤抑制机器人

Denis Huen, Jindong Liu, Benny P. L. Lo
{"title":"一种具有环境感知传感的集成可穿戴式震颤抑制机器人","authors":"Denis Huen, Jindong Liu, Benny P. L. Lo","doi":"10.1109/BSN.2016.7516280","DOIUrl":null,"url":null,"abstract":"Tremor is a neurological disorder which can significantly impede the daily functions of patients. The available treatments for patients with tremor are mainly pharmacotherapy and neurosurgery, but these treatments often have side effects. A wearable exoskeleton can potentially provide the assistance needed for patients with Parkinsonian or essential tremor to carry out daily activities and enable independent living. This paper presents the design and development of a 3D printed lightweight tremor suppression wearable exoskeleton. One of the major technical challenges for wearable robot is to maintain long battery life meanwhile miniature in size for practical use. This paper proposes an integrated approach where context aware Body Sensor Networks (BSN) sensors are incorporated to characterize voluntary and tremor movement, and detect activities of daily life (ADL). With the contextual information, the system can determine the intention of the user, optimize its control and minimize its power consumption by providing the necessary suppression only when needed. The preliminary result has shown that the wearable robot prototype can reduce the amplitude of simulated tremor by around 77%, and accurately identify different ADL with accuracy above 70%.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"An integrated wearable robot for tremor suppression with context aware sensing\",\"authors\":\"Denis Huen, Jindong Liu, Benny P. L. Lo\",\"doi\":\"10.1109/BSN.2016.7516280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tremor is a neurological disorder which can significantly impede the daily functions of patients. The available treatments for patients with tremor are mainly pharmacotherapy and neurosurgery, but these treatments often have side effects. A wearable exoskeleton can potentially provide the assistance needed for patients with Parkinsonian or essential tremor to carry out daily activities and enable independent living. This paper presents the design and development of a 3D printed lightweight tremor suppression wearable exoskeleton. One of the major technical challenges for wearable robot is to maintain long battery life meanwhile miniature in size for practical use. This paper proposes an integrated approach where context aware Body Sensor Networks (BSN) sensors are incorporated to characterize voluntary and tremor movement, and detect activities of daily life (ADL). With the contextual information, the system can determine the intention of the user, optimize its control and minimize its power consumption by providing the necessary suppression only when needed. The preliminary result has shown that the wearable robot prototype can reduce the amplitude of simulated tremor by around 77%, and accurately identify different ADL with accuracy above 70%.\",\"PeriodicalId\":205735,\"journal\":{\"name\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2016.7516280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

震颤是一种严重影响患者日常功能的神经系统疾病。现有的治疗方法主要是药物治疗和神经外科手术,但这些治疗方法往往有副作用。可穿戴外骨骼可以潜在地为帕金森病或特发性震颤患者提供日常活动和独立生活所需的帮助。本文介绍了一种3D打印的轻型震颤抑制可穿戴外骨骼的设计与开发。可穿戴式机器人的主要技术挑战之一是在保持长电池寿命的同时缩小实际使用的尺寸。本文提出了一种整合上下文感知身体传感器网络(BSN)传感器的方法来表征自主和震颤运动,并检测日常生活活动(ADL)。有了上下文信息,系统可以确定用户的意图,优化其控制,并通过仅在需要时提供必要的抑制来最小化其功耗。初步结果表明,该可穿戴机器人样机可将模拟震颤幅度降低77%左右,并能准确识别不同的ADL,准确率在70%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An integrated wearable robot for tremor suppression with context aware sensing
Tremor is a neurological disorder which can significantly impede the daily functions of patients. The available treatments for patients with tremor are mainly pharmacotherapy and neurosurgery, but these treatments often have side effects. A wearable exoskeleton can potentially provide the assistance needed for patients with Parkinsonian or essential tremor to carry out daily activities and enable independent living. This paper presents the design and development of a 3D printed lightweight tremor suppression wearable exoskeleton. One of the major technical challenges for wearable robot is to maintain long battery life meanwhile miniature in size for practical use. This paper proposes an integrated approach where context aware Body Sensor Networks (BSN) sensors are incorporated to characterize voluntary and tremor movement, and detect activities of daily life (ADL). With the contextual information, the system can determine the intention of the user, optimize its control and minimize its power consumption by providing the necessary suppression only when needed. The preliminary result has shown that the wearable robot prototype can reduce the amplitude of simulated tremor by around 77%, and accurately identify different ADL with accuracy above 70%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edemeter: Wearable and continuous fluid retention monitoring Probabilistic sensor network design Tracking body core temperature in military thermal environments: An extended Kalman filter approach A multimodal sensor system for automated marmoset behavioral analysis Accurate personal ultraviolet dose estimation with multiple wearable sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1