图搜索算法中减少通信的缓存方法

Pietro Cicotti, L. Carrington
{"title":"图搜索算法中减少通信的缓存方法","authors":"Pietro Cicotti, L. Carrington","doi":"10.1109/DISCS.2014.8","DOIUrl":null,"url":null,"abstract":"In many scientific and computational domains, graphs are used to represent and analyze data. Such graphs often exhibit the characteristics of small-world networks: few high-degree vertexes connect many low-degree vertexes. Despite the randomness in a graph search, it is possible to capitalize on this characteristic and cache relevant information in high-degree vertexes. We applied this idea by caching remote vertex ids in a parallel breadth-first search implementation, and demonstrated 1.6x to 2.4x speedup over the reference implementation on 64 to 1024 cores. We proposed a system design in which resources are dedicated exclusively to caching, and shared among a set of nodes. Our evaluation demonstrates that this design has the potential to reduce communication and improve performance over large scale systems. Finally, we used a memcached system as the cache server finding that a generic protocol that does not match the usage semantics may hinder the potential performance improvements.","PeriodicalId":278119,"journal":{"name":"2014 International Workshop on Data Intensive Scalable Computing Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Caching Approach to Reduce Communication in Graph Search Algorithms\",\"authors\":\"Pietro Cicotti, L. Carrington\",\"doi\":\"10.1109/DISCS.2014.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many scientific and computational domains, graphs are used to represent and analyze data. Such graphs often exhibit the characteristics of small-world networks: few high-degree vertexes connect many low-degree vertexes. Despite the randomness in a graph search, it is possible to capitalize on this characteristic and cache relevant information in high-degree vertexes. We applied this idea by caching remote vertex ids in a parallel breadth-first search implementation, and demonstrated 1.6x to 2.4x speedup over the reference implementation on 64 to 1024 cores. We proposed a system design in which resources are dedicated exclusively to caching, and shared among a set of nodes. Our evaluation demonstrates that this design has the potential to reduce communication and improve performance over large scale systems. Finally, we used a memcached system as the cache server finding that a generic protocol that does not match the usage semantics may hinder the potential performance improvements.\",\"PeriodicalId\":278119,\"journal\":{\"name\":\"2014 International Workshop on Data Intensive Scalable Computing Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Data Intensive Scalable Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DISCS.2014.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Data Intensive Scalable Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCS.2014.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在许多科学和计算领域,图形被用来表示和分析数据。这样的图通常表现出小世界网络的特征:很少有高度顶点连接许多低度顶点。尽管图搜索具有随机性,但可以利用这一特性并将相关信息缓存在高阶顶点中。我们通过在并行宽度优先搜索实现中缓存远程顶点id来应用这个想法,并演示了在64到1024核上比参考实现提高1.6到2.4倍的速度。我们提出了一种系统设计,其中资源专门用于缓存,并在一组节点之间共享。我们的评估表明,这种设计具有减少通信和提高大型系统性能的潜力。最后,我们使用memcached系统作为缓存服务器,发现与使用语义不匹配的通用协议可能会阻碍潜在的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Caching Approach to Reduce Communication in Graph Search Algorithms
In many scientific and computational domains, graphs are used to represent and analyze data. Such graphs often exhibit the characteristics of small-world networks: few high-degree vertexes connect many low-degree vertexes. Despite the randomness in a graph search, it is possible to capitalize on this characteristic and cache relevant information in high-degree vertexes. We applied this idea by caching remote vertex ids in a parallel breadth-first search implementation, and demonstrated 1.6x to 2.4x speedup over the reference implementation on 64 to 1024 cores. We proposed a system design in which resources are dedicated exclusively to caching, and shared among a set of nodes. Our evaluation demonstrates that this design has the potential to reduce communication and improve performance over large scale systems. Finally, we used a memcached system as the cache server finding that a generic protocol that does not match the usage semantics may hinder the potential performance improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CULZSS-Bit: A Bit-Vector Algorithm for Lossless Data Compression on GPGPUs Mapping of RAID Controller Performance Data to the Job History on Large Computing Systems PSA: A Performance and Space-Aware Data Layout Scheme for Hybrid Parallel File Systems A Caching Approach to Reduce Communication in Graph Search Algorithms Distributed Multipath Routing Algorithm for Data Center Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1