从Dirichlet边界条件检验有限元模拟的自动化构造

Kevin N. Chiu, M. Fuge
{"title":"从Dirichlet边界条件检验有限元模拟的自动化构造","authors":"Kevin N. Chiu, M. Fuge","doi":"10.1115/detc2019-98000","DOIUrl":null,"url":null,"abstract":"\n From engineering analysis and topology optimization to generative design and machine learning, many modern computational design approaches require either large amounts of data or a method to generate that data. This paper addresses key issues with automatically generating such data through automating the construction of Finite Element Method (FEM) simulations from Dirichlet boundary conditions. Most past work on automating FEM assumes prior knowledge of the physics to be run or is limited to a small number of governing equations.\n In contrast, we propose three improvements to current methods of automating the FEM: (1) completeness labels that guarantee viability of a simulation under specific conditions, (2) type-based labels for solution fields that robustly generate and identify solution fields, and (3) type-based labels for variational forms of governing equations that map the three components of a simulation set — specifically, boundary conditions, solution fields, and a variational form — to each other to form a viable FEM simulation. We implement these improvements using the FEniCS library as an example case. We show that our improvements increase the percent of viable simulations that are run automatically from a given list of boundary conditions. This paper’s procedures ultimately allow for the automatic — i.e., fully computer-controlled — construction of FEM multi-physics simulations and data collection required to run data-driven models of physics phenomena or automate the exploration of topology optimization under many physics.","PeriodicalId":365601,"journal":{"name":"Volume 2A: 45th Design Automation Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Checking the Automated Construction of Finite Element Simulations From Dirichlet Boundary Conditions\",\"authors\":\"Kevin N. Chiu, M. Fuge\",\"doi\":\"10.1115/detc2019-98000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n From engineering analysis and topology optimization to generative design and machine learning, many modern computational design approaches require either large amounts of data or a method to generate that data. This paper addresses key issues with automatically generating such data through automating the construction of Finite Element Method (FEM) simulations from Dirichlet boundary conditions. Most past work on automating FEM assumes prior knowledge of the physics to be run or is limited to a small number of governing equations.\\n In contrast, we propose three improvements to current methods of automating the FEM: (1) completeness labels that guarantee viability of a simulation under specific conditions, (2) type-based labels for solution fields that robustly generate and identify solution fields, and (3) type-based labels for variational forms of governing equations that map the three components of a simulation set — specifically, boundary conditions, solution fields, and a variational form — to each other to form a viable FEM simulation. We implement these improvements using the FEniCS library as an example case. We show that our improvements increase the percent of viable simulations that are run automatically from a given list of boundary conditions. This paper’s procedures ultimately allow for the automatic — i.e., fully computer-controlled — construction of FEM multi-physics simulations and data collection required to run data-driven models of physics phenomena or automate the exploration of topology optimization under many physics.\",\"PeriodicalId\":365601,\"journal\":{\"name\":\"Volume 2A: 45th Design Automation Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 45th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 45th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从工程分析和拓扑优化到生成设计和机器学习,许多现代计算设计方法要么需要大量数据,要么需要生成这些数据的方法。本文通过在Dirichlet边界条件下自动构建有限元法(FEM)模拟来解决自动生成此类数据的关键问题。过去大多数关于FEM自动化的工作都假定对要运行的物理具有先验知识,或者仅限于少量的控制方程。相比之下,我们提出了三个改进现有的自动化有限元方法:(1)保证在特定条件下模拟可行性的完备性标签,(2)鲁棒生成和识别解域的解域的基于类型的标签,以及(3)控制方程的变分形式的基于类型的标签,这些变分形式将模拟集的三个组成部分(具体来说,边界条件、解域和变分形式)相互映射,以形成可行的FEM模拟。我们以FEniCS库为例来实现这些改进。我们表明,我们的改进增加了在给定的边界条件列表中自动运行的可行模拟的百分比。本文的程序最终允许自动(即完全由计算机控制)构建FEM多物理场模拟和数据收集,以运行物理现象的数据驱动模型或自动探索许多物理场下的拓扑优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Checking the Automated Construction of Finite Element Simulations From Dirichlet Boundary Conditions
From engineering analysis and topology optimization to generative design and machine learning, many modern computational design approaches require either large amounts of data or a method to generate that data. This paper addresses key issues with automatically generating such data through automating the construction of Finite Element Method (FEM) simulations from Dirichlet boundary conditions. Most past work on automating FEM assumes prior knowledge of the physics to be run or is limited to a small number of governing equations. In contrast, we propose three improvements to current methods of automating the FEM: (1) completeness labels that guarantee viability of a simulation under specific conditions, (2) type-based labels for solution fields that robustly generate and identify solution fields, and (3) type-based labels for variational forms of governing equations that map the three components of a simulation set — specifically, boundary conditions, solution fields, and a variational form — to each other to form a viable FEM simulation. We implement these improvements using the FEniCS library as an example case. We show that our improvements increase the percent of viable simulations that are run automatically from a given list of boundary conditions. This paper’s procedures ultimately allow for the automatic — i.e., fully computer-controlled — construction of FEM multi-physics simulations and data collection required to run data-driven models of physics phenomena or automate the exploration of topology optimization under many physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inverse Thermo-Mechanical Processing (ITMP) Design of a Steel Rod During Hot Rolling Process Generative Design of Multi-Material Hierarchical Structures via Concurrent Topology Optimization and Conformal Geometry Method Computational Design of a Personalized Artificial Spinal Disc With a Data-Driven Design Variable Linking Heuristic Gaussian Process Based Crack Initiation Modeling for Design of Battery Anode Materials Deep Reinforcement Learning for Transfer of Control Policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1