模糊时间序列降雨预报的盒须图法离群数据滤波

Made Doddy Adi Pranatha, N. Pramaita, M. Sudarma, I. Widyantara
{"title":"模糊时间序列降雨预报的盒须图法离群数据滤波","authors":"Made Doddy Adi Pranatha, N. Pramaita, M. Sudarma, I. Widyantara","doi":"10.1109/ICWT.2018.8527734","DOIUrl":null,"url":null,"abstract":"Rainfall forecasting provides benefits in several sector. The pattern of rainfall intensity in the same month every year has similarities, so that modeling of fuzzy time series can be used to model rainfall pattern in a region, but the amount of rainfall in every month has a varied value which where there is too high rainfall values and too low (outlier). The value of the outlier can damage the error distribution causing the forecasting value to be not good, so it needs an outlier search method to optimize the fuzzy time series method. In this research has prposed the model used box whisker plot method to find outlier data and then compare the result fuzzy time series method with outlier data and data with outlier that have been omitted. The accuracy value is better indicated by the decrease in MAD value where the initial MAD value forecasting with outlier data is 114.39 and the predicted MAD value forecasting without outlier data is 93.85.","PeriodicalId":356888,"journal":{"name":"2018 4th International Conference on Wireless and Telematics (ICWT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Filtering Outlier Data Using Box Whisker Plot Method for Fuzzy Time Series Rainfall Forecasting\",\"authors\":\"Made Doddy Adi Pranatha, N. Pramaita, M. Sudarma, I. Widyantara\",\"doi\":\"10.1109/ICWT.2018.8527734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rainfall forecasting provides benefits in several sector. The pattern of rainfall intensity in the same month every year has similarities, so that modeling of fuzzy time series can be used to model rainfall pattern in a region, but the amount of rainfall in every month has a varied value which where there is too high rainfall values and too low (outlier). The value of the outlier can damage the error distribution causing the forecasting value to be not good, so it needs an outlier search method to optimize the fuzzy time series method. In this research has prposed the model used box whisker plot method to find outlier data and then compare the result fuzzy time series method with outlier data and data with outlier that have been omitted. The accuracy value is better indicated by the decrease in MAD value where the initial MAD value forecasting with outlier data is 114.39 and the predicted MAD value forecasting without outlier data is 93.85.\",\"PeriodicalId\":356888,\"journal\":{\"name\":\"2018 4th International Conference on Wireless and Telematics (ICWT)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Wireless and Telematics (ICWT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWT.2018.8527734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Wireless and Telematics (ICWT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWT.2018.8527734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

降雨预报在几个部门提供了好处。每年同月的降雨强度模式具有相似性,因此可以使用模糊时间序列建模来模拟一个地区的降雨模式,但每个月的降雨量在降雨量过高和过低(离群值)的地方存在变化值。异常值的取值会破坏误差分布,导致预测结果不佳,因此需要采用异常值搜索方法对模糊时间序列方法进行优化。本研究提出了采用盒状须图方法寻找离群数据的模型,然后将模糊时间序列方法与离群数据和省略离群数据的结果进行比较。通过MAD值的减小来更好地表示精度值,其中有离群数据的初始MAD值预测为114.39,无离群数据的预测MAD值为93.85。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Filtering Outlier Data Using Box Whisker Plot Method for Fuzzy Time Series Rainfall Forecasting
Rainfall forecasting provides benefits in several sector. The pattern of rainfall intensity in the same month every year has similarities, so that modeling of fuzzy time series can be used to model rainfall pattern in a region, but the amount of rainfall in every month has a varied value which where there is too high rainfall values and too low (outlier). The value of the outlier can damage the error distribution causing the forecasting value to be not good, so it needs an outlier search method to optimize the fuzzy time series method. In this research has prposed the model used box whisker plot method to find outlier data and then compare the result fuzzy time series method with outlier data and data with outlier that have been omitted. The accuracy value is better indicated by the decrease in MAD value where the initial MAD value forecasting with outlier data is 114.39 and the predicted MAD value forecasting without outlier data is 93.85.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Key Distribution (QKD) Protocols: A Survey Designing Electronic Module on Synthetic Polymer Material Based on Green Chemistry Proximity-Coupled Multiband Substrate Integrated Waveguide Antenna with Defected Ground Structure System Design of Controlling and Monitoring on Aquaponic Based on Internet of Things Design and Implementation of SDR-Based GSM Mobile BTS for Remote and Disaster Affected Areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1