基于深度神经网络的气象图像干扰要素分类

Lukáš Urbaník, Lukáš Ivica, R. Forgác, Miloš Očkay, Irina Malkin Ondík
{"title":"基于深度神经网络的气象图像干扰要素分类","authors":"Lukáš Urbaník, Lukáš Ivica, R. Forgác, Miloš Očkay, Irina Malkin Ondík","doi":"10.23919/NTSP54843.2022.9920418","DOIUrl":null,"url":null,"abstract":"Presented work summarizes selected Convolutional Neural Networks classification of interfering elements in the meteorological images. Interfering elements, such as raindrops and insect adhered to camera lens, bright sun and other elements limit the process of automatic remote estimation of visibility at airports. We have experimented with three groups of pretrained neural networks. Namely we used AlexNet, DenseNet and ResNet. DenseNet169 classification appears to be a suitable solution. All the examined classification metrics, under the conditions of a classification threshold of 99% and above, indicated values above 90%. The paper also presents real deployment of classification models for full high definition camera images.","PeriodicalId":103310,"journal":{"name":"2022 New Trends in Signal Processing (NTSP)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Interfering Elements in the Meteorological Images by Deep Neural Networks\",\"authors\":\"Lukáš Urbaník, Lukáš Ivica, R. Forgác, Miloš Očkay, Irina Malkin Ondík\",\"doi\":\"10.23919/NTSP54843.2022.9920418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presented work summarizes selected Convolutional Neural Networks classification of interfering elements in the meteorological images. Interfering elements, such as raindrops and insect adhered to camera lens, bright sun and other elements limit the process of automatic remote estimation of visibility at airports. We have experimented with three groups of pretrained neural networks. Namely we used AlexNet, DenseNet and ResNet. DenseNet169 classification appears to be a suitable solution. All the examined classification metrics, under the conditions of a classification threshold of 99% and above, indicated values above 90%. The paper also presents real deployment of classification models for full high definition camera images.\",\"PeriodicalId\":103310,\"journal\":{\"name\":\"2022 New Trends in Signal Processing (NTSP)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 New Trends in Signal Processing (NTSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/NTSP54843.2022.9920418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 New Trends in Signal Processing (NTSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/NTSP54843.2022.9920418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出的工作总结了选择的卷积神经网络分类的干扰因素在气象图像。干扰因素,如雨滴和昆虫粘附在相机镜头,明亮的太阳等因素限制了机场能见度的自动远程估计过程。我们用三组预训练的神经网络做了实验。即我们使用AlexNet, DenseNet和ResNet。DenseNet169分类似乎是一个合适的解决方案。在分类阈值为99%及以上的条件下,所检查的所有分类指标的值均大于90%。本文还介绍了全高清相机图像分类模型的实际部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Interfering Elements in the Meteorological Images by Deep Neural Networks
Presented work summarizes selected Convolutional Neural Networks classification of interfering elements in the meteorological images. Interfering elements, such as raindrops and insect adhered to camera lens, bright sun and other elements limit the process of automatic remote estimation of visibility at airports. We have experimented with three groups of pretrained neural networks. Namely we used AlexNet, DenseNet and ResNet. DenseNet169 classification appears to be a suitable solution. All the examined classification metrics, under the conditions of a classification threshold of 99% and above, indicated values above 90%. The paper also presents real deployment of classification models for full high definition camera images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Tool for Pronunciation Training of Specific English Terminology Simulation and Measurement of Optical Networks 10 and 100 Gb/s Investigation of the Potential Influence of Wind Farms on the VHF Tactical Links Performance Malware Signatures Detection with Neural Networks Implementation of True Current Amplifiers via Commercial Integrated Circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1