{"title":"基于ORCM的非线性分析","authors":"Yong-Ming Guo, Hirotaka Osako, S. Kamitani","doi":"10.1299/JCST.7.114","DOIUrl":null,"url":null,"abstract":"In this paper, nonlinear boundary value problems are analyzed by using the over-range collocation method (ORCM). By introducing some collocation points, which are located at outside of domain of the analyzed body, unsatisfactory issue of the positivity conditions of boundary points in collocation methods can be avoided. Quite accurate numerical results of the nonlinear partial differential equations have been obtained. Because the ORCM does not demand any specific type of partial differential equations, it shows promise of wide engineering applications of the ORCM.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Nonlinear Analyses by Using the ORCM\",\"authors\":\"Yong-Ming Guo, Hirotaka Osako, S. Kamitani\",\"doi\":\"10.1299/JCST.7.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, nonlinear boundary value problems are analyzed by using the over-range collocation method (ORCM). By introducing some collocation points, which are located at outside of domain of the analyzed body, unsatisfactory issue of the positivity conditions of boundary points in collocation methods can be avoided. Quite accurate numerical results of the nonlinear partial differential equations have been obtained. Because the ORCM does not demand any specific type of partial differential equations, it shows promise of wide engineering applications of the ORCM.\",\"PeriodicalId\":196913,\"journal\":{\"name\":\"Journal of Computational Science and Technology\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JCST.7.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.7.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, nonlinear boundary value problems are analyzed by using the over-range collocation method (ORCM). By introducing some collocation points, which are located at outside of domain of the analyzed body, unsatisfactory issue of the positivity conditions of boundary points in collocation methods can be avoided. Quite accurate numerical results of the nonlinear partial differential equations have been obtained. Because the ORCM does not demand any specific type of partial differential equations, it shows promise of wide engineering applications of the ORCM.