暴露于NSL-KDD数据集的基于contiki - ng的物联网网络的机器学习驱动入侵检测

Jinxin Liu, B. Kantarci, C. Adams
{"title":"暴露于NSL-KDD数据集的基于contiki - ng的物联网网络的机器学习驱动入侵检测","authors":"Jinxin Liu, B. Kantarci, C. Adams","doi":"10.1145/3395352.3402621","DOIUrl":null,"url":null,"abstract":"Wide adoption of Internet of Things (IoT) devices and applications encounters security vulnerabilities as roadblocks. The heterogeneous nature of IoT systems prevents common benchmarks, such as the NSL-KDD dataset, from being used to test and verify the performance of different Network Intrusion Detection Systems (NIDS). In order to bridge this gap, in this paper, we examine specific attacks in the NSL-KDD dataset that can impact sensor nodes and networks in IoT settings. Furthermore, in order to detect the introduced attacks, we study eleven machine learning algorithms and report the results. Through numerical analysis, we show that tree-based methods and ensemble methods outperform the rest of the studied machine learning methods. Among the supervised algorithms, XGBoost ranks the first with 97% accuracy, 90.5% Matthews correlation coefficient (MCC), and 99.6% Area Under the Curve (AUC) performance. Moreover, a notable research finding of this study is that the Expectation-Maximization (EM) algorithm, which is an unsupervised method, also performs reasonably well in the detection of the attacks in the NSL-KDD dataset and outperforms the accuracy of the Naïve Bayes classifier by 22.0%.","PeriodicalId":370816,"journal":{"name":"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Machine learning-driven intrusion detection for Contiki-NG-based IoT networks exposed to NSL-KDD dataset\",\"authors\":\"Jinxin Liu, B. Kantarci, C. Adams\",\"doi\":\"10.1145/3395352.3402621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wide adoption of Internet of Things (IoT) devices and applications encounters security vulnerabilities as roadblocks. The heterogeneous nature of IoT systems prevents common benchmarks, such as the NSL-KDD dataset, from being used to test and verify the performance of different Network Intrusion Detection Systems (NIDS). In order to bridge this gap, in this paper, we examine specific attacks in the NSL-KDD dataset that can impact sensor nodes and networks in IoT settings. Furthermore, in order to detect the introduced attacks, we study eleven machine learning algorithms and report the results. Through numerical analysis, we show that tree-based methods and ensemble methods outperform the rest of the studied machine learning methods. Among the supervised algorithms, XGBoost ranks the first with 97% accuracy, 90.5% Matthews correlation coefficient (MCC), and 99.6% Area Under the Curve (AUC) performance. Moreover, a notable research finding of this study is that the Expectation-Maximization (EM) algorithm, which is an unsupervised method, also performs reasonably well in the detection of the attacks in the NSL-KDD dataset and outperforms the accuracy of the Naïve Bayes classifier by 22.0%.\",\"PeriodicalId\":370816,\"journal\":{\"name\":\"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3395352.3402621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395352.3402621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

物联网(IoT)设备和应用的广泛采用遇到了安全漏洞作为障碍。物联网系统的异构特性阻止了通用基准(如NSL-KDD数据集)用于测试和验证不同网络入侵检测系统(NIDS)的性能。为了弥补这一差距,在本文中,我们研究了NSL-KDD数据集中可能影响物联网设置中的传感器节点和网络的特定攻击。此外,为了检测引入的攻击,我们研究了11种机器学习算法并报告了结果。通过数值分析,我们表明基于树的方法和集成方法优于其他研究的机器学习方法。在监督算法中,XGBoost以97%的准确率、90.5%的马修斯相关系数(MCC)和99.6%的曲线下面积(AUC)性能排名第一。此外,本研究的一个值得注意的研究发现是,期望最大化(EM)算法作为一种无监督方法,在NSL-KDD数据集的攻击检测中也表现得相当好,并且比Naïve贝叶斯分类器的准确率高出22.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-driven intrusion detection for Contiki-NG-based IoT networks exposed to NSL-KDD dataset
Wide adoption of Internet of Things (IoT) devices and applications encounters security vulnerabilities as roadblocks. The heterogeneous nature of IoT systems prevents common benchmarks, such as the NSL-KDD dataset, from being used to test and verify the performance of different Network Intrusion Detection Systems (NIDS). In order to bridge this gap, in this paper, we examine specific attacks in the NSL-KDD dataset that can impact sensor nodes and networks in IoT settings. Furthermore, in order to detect the introduced attacks, we study eleven machine learning algorithms and report the results. Through numerical analysis, we show that tree-based methods and ensemble methods outperform the rest of the studied machine learning methods. Among the supervised algorithms, XGBoost ranks the first with 97% accuracy, 90.5% Matthews correlation coefficient (MCC), and 99.6% Area Under the Curve (AUC) performance. Moreover, a notable research finding of this study is that the Expectation-Maximization (EM) algorithm, which is an unsupervised method, also performs reasonably well in the detection of the attacks in the NSL-KDD dataset and outperforms the accuracy of the Naïve Bayes classifier by 22.0%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wideband spectral monitoring using deep learning Generalized wireless adversarial deep learning Retracted on July 26, 2022: Open set recognition through unsupervised and class-distance learning Encrypted rich-data steganography using generative adversarial networks Generative adversarial attacks against intrusion detection systems using active learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1