mg掺杂InxGa1−xN (x ~ 0.4)的低活化能和自补偿模型

Md. Nazmul Hasan, Md. Soyaeb Hasan, M. Islam
{"title":"mg掺杂InxGa1−xN (x ~ 0.4)的低活化能和自补偿模型","authors":"Md. Nazmul Hasan, Md. Soyaeb Hasan, M. Islam","doi":"10.1109/ICECE.2014.7027022","DOIUrl":null,"url":null,"abstract":"p-InGaN epitaxial layer is crucially important for advanced electronic and optoelectronic devices. The activation energy (E<sub>A</sub>) of Mg-acceptor, universally accepted p-type dopant, and hole concentration (p) of Mg-doped In<sub>x</sub>Ga<sub>1-x</sub>N alloys (x~0.4) have been investigated herein. The E<sub>A</sub> has been calculated using an equation almost fitted with experimental data available in literatures in which E<sub>A</sub> decreases with the increase in In content (x) in In<sub>x</sub>Ga<sub>1-x</sub>N. The observed EA in Mg doped In<sub>0.4</sub>Ga<sub>0.6</sub>N alloys is about 41 meV which is few times smaller than Mg doped GaN, widely used active p-layer from III-nitride. The increased carrier concentration (p) due to increasing In content is near about 9.7×10<sup>18</sup> cm<sup>-3</sup> for x~0.4. The hole concentration starts to decrease at around the Mg concentration of 4.5×10<sup>19</sup> cm<sup>-3</sup>. These results indicate that self-compensation occurs in Mg-doped InGaN at higher-doping levels.","PeriodicalId":335492,"journal":{"name":"8th International Conference on Electrical and Computer Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low activation energy of Mg-doped InxGa1−xN (x∼0.4) and self-compensation modelling\",\"authors\":\"Md. Nazmul Hasan, Md. Soyaeb Hasan, M. Islam\",\"doi\":\"10.1109/ICECE.2014.7027022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"p-InGaN epitaxial layer is crucially important for advanced electronic and optoelectronic devices. The activation energy (E<sub>A</sub>) of Mg-acceptor, universally accepted p-type dopant, and hole concentration (p) of Mg-doped In<sub>x</sub>Ga<sub>1-x</sub>N alloys (x~0.4) have been investigated herein. The E<sub>A</sub> has been calculated using an equation almost fitted with experimental data available in literatures in which E<sub>A</sub> decreases with the increase in In content (x) in In<sub>x</sub>Ga<sub>1-x</sub>N. The observed EA in Mg doped In<sub>0.4</sub>Ga<sub>0.6</sub>N alloys is about 41 meV which is few times smaller than Mg doped GaN, widely used active p-layer from III-nitride. The increased carrier concentration (p) due to increasing In content is near about 9.7×10<sup>18</sup> cm<sup>-3</sup> for x~0.4. The hole concentration starts to decrease at around the Mg concentration of 4.5×10<sup>19</sup> cm<sup>-3</sup>. These results indicate that self-compensation occurs in Mg-doped InGaN at higher-doping levels.\",\"PeriodicalId\":335492,\"journal\":{\"name\":\"8th International Conference on Electrical and Computer Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"8th International Conference on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECE.2014.7027022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE.2014.7027022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

p-InGaN外延层对于先进的电子和光电子器件至关重要。本文研究了mg受体、普遍接受的p型掺杂剂的活化能(EA)和掺mg的InxGa1-xN合金(x~0.4)的空穴浓度(p)。利用与文献实验数据几乎吻合的方程计算了EA,其中EA随着InxGa1-xN中in含量的增加而减小。在Mg掺杂的In0.4Ga0.6N合金中观察到的EA约为41 meV,比Mg掺杂的GaN(广泛应用于iii -氮化物的活性p层)小几倍。当x~0.4时,因In含量增加而增加的载流子浓度(p)约为9.7×1018 cm-3。在Mg浓度4.5×1019 cm-3附近,空穴浓度开始下降。这些结果表明,在高掺杂水平下,mg掺杂的InGaN发生了自补偿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low activation energy of Mg-doped InxGa1−xN (x∼0.4) and self-compensation modelling
p-InGaN epitaxial layer is crucially important for advanced electronic and optoelectronic devices. The activation energy (EA) of Mg-acceptor, universally accepted p-type dopant, and hole concentration (p) of Mg-doped InxGa1-xN alloys (x~0.4) have been investigated herein. The EA has been calculated using an equation almost fitted with experimental data available in literatures in which EA decreases with the increase in In content (x) in InxGa1-xN. The observed EA in Mg doped In0.4Ga0.6N alloys is about 41 meV which is few times smaller than Mg doped GaN, widely used active p-layer from III-nitride. The increased carrier concentration (p) due to increasing In content is near about 9.7×1018 cm-3 for x~0.4. The hole concentration starts to decrease at around the Mg concentration of 4.5×1019 cm-3. These results indicate that self-compensation occurs in Mg-doped InGaN at higher-doping levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical prediction of optical transitions in metallic armchair SWCNTs Dynamics of fullerene self-insertion into carbon nanotubes in water Diffusion tensor based global tractography of human brain fiber bundles Biomass quality analysis for power generation Video-based affinity group detection using trajectories of multiple subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1