使用子单元预测的聚类点半色调有损压缩

R. A. V. Kam, R. Gray
{"title":"使用子单元预测的聚类点半色调有损压缩","authors":"R. A. V. Kam, R. Gray","doi":"10.1109/DCC.1995.515501","DOIUrl":null,"url":null,"abstract":"We propose a predictive coding algorithm for lossy compression of digital halftones produced by clustered-dot dithering. In our scheme, the predictor estimates the size and shape of each halftone dot (cluster) based on the characteristics of neighboring clusters. The prediction template depends on which portion, or sub-cell, of the dithering matrix produced the dot. Information loss is permitted through imperfect representation of the prediction residuals. For some clusters, no residual is transmitted at all, and for others, information about the spatial locations of bit errors is omitted. Specifying only the number of bit errors in the residual is enough to allow the decoder to form an excellent approximation to the original dot structure. We also propose a simple alternative to the ordinary Hamming distance for computing distortion in bi-level images. Experiments with 1024/spl times/1024 images, 8/spl times/8 dithering cells, and 600 dpi printing have shown that the coding algorithm maintains good image quality while achieving rates below 0.1 bits per pixel.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Lossy compression of clustered-dot halftones using sub-cell prediction\",\"authors\":\"R. A. V. Kam, R. Gray\",\"doi\":\"10.1109/DCC.1995.515501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a predictive coding algorithm for lossy compression of digital halftones produced by clustered-dot dithering. In our scheme, the predictor estimates the size and shape of each halftone dot (cluster) based on the characteristics of neighboring clusters. The prediction template depends on which portion, or sub-cell, of the dithering matrix produced the dot. Information loss is permitted through imperfect representation of the prediction residuals. For some clusters, no residual is transmitted at all, and for others, information about the spatial locations of bit errors is omitted. Specifying only the number of bit errors in the residual is enough to allow the decoder to form an excellent approximation to the original dot structure. We also propose a simple alternative to the ordinary Hamming distance for computing distortion in bi-level images. Experiments with 1024/spl times/1024 images, 8/spl times/8 dithering cells, and 600 dpi printing have shown that the coding algorithm maintains good image quality while achieving rates below 0.1 bits per pixel.\",\"PeriodicalId\":107017,\"journal\":{\"name\":\"Proceedings DCC '95 Data Compression Conference\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '95 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1995.515501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种预测编码算法,用于对聚簇点抖动产生的数字半色调进行有损压缩。在我们的方案中,预测器根据相邻簇的特征估计每个半色调点(簇)的大小和形状。预测模板取决于抖动矩阵的哪个部分或子单元产生了点。由于预测残差的不完美表示,允许信息丢失。对于某些簇,根本不传输残差,而对于其他簇,省略了有关误码的空间位置的信息。仅指定残差中的误码数就足以使解码器形成与原始点结构的极好近似。我们还提出了一种简单的替代普通汉明距离的方法来计算双电平图像的失真。对1024/spl次/1024图像、8/spl次/8抖动单元和600 dpi打印进行的实验表明,编码算法在实现低于0.1比特/像素的速率时保持了良好的图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lossy compression of clustered-dot halftones using sub-cell prediction
We propose a predictive coding algorithm for lossy compression of digital halftones produced by clustered-dot dithering. In our scheme, the predictor estimates the size and shape of each halftone dot (cluster) based on the characteristics of neighboring clusters. The prediction template depends on which portion, or sub-cell, of the dithering matrix produced the dot. Information loss is permitted through imperfect representation of the prediction residuals. For some clusters, no residual is transmitted at all, and for others, information about the spatial locations of bit errors is omitted. Specifying only the number of bit errors in the residual is enough to allow the decoder to form an excellent approximation to the original dot structure. We also propose a simple alternative to the ordinary Hamming distance for computing distortion in bi-level images. Experiments with 1024/spl times/1024 images, 8/spl times/8 dithering cells, and 600 dpi printing have shown that the coding algorithm maintains good image quality while achieving rates below 0.1 bits per pixel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiplication-free subband coding of color images Constraining the size of the instantaneous alphabet in trellis quantizers Classified conditional entropy coding of LSP parameters Lattice-based designs of direct sum codebooks for vector quantization On the performance of affine index assignments for redundancy free source-channel coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1