基于简化ASME分析方法的紧凑型换热器设计评价

A. Shaw, Ian W. Jentz, Heramb P. Mahajan, T. Hassan
{"title":"基于简化ASME分析方法的紧凑型换热器设计评价","authors":"A. Shaw, Ian W. Jentz, Heramb P. Mahajan, T. Hassan","doi":"10.1115/pvp2020-21547","DOIUrl":null,"url":null,"abstract":"\n High thermal efficiency of Compact Heat Exchangers (CHX) makes them distinctly utile for application to Next Generation Nuclear Plants (NGNPs). The high temperature application and transient conditions of NGNP operation induce stresses in CHX. These induced stresses can be categorized under different classifications based on their cause and location. ASME Sec. III Div. 5 has different analysis methodologies based on failure modes, failure criteria to be assessed, and constitutive relationship considered. The primary objective of this study is to provide a description of the classification of stresses in CHX. Further, evaluation of CHX design is conducted according to simplified analysis methodologies in ASME Sec. III Div. 5: Elastic and Simplified Inelastic Analysis. These simplified analyses are performed following the submodeling technique. At the global level, the channeled core is replaced by an elastic orthotropic core for analysis. At the local level, the stresses and strains for critical regions are determined following the simplified analysis methods. The load controlled stresses are checked against HBB-3220 of ASME Sec. III Div. 5. For the Elastic Analysis Method, strains in critical sections in CHX are checked for thermomechanical cycle against the HBB-T-1320 of ASME Sec. III Div. 5 criteria. For Simplified Inelastic Analysis, critical sections are analyzed for strain limits following HBB-T-1330 of ASME Sec. III Div. 5. The analyses outcomes are compared and results are discussed.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Compact Heat Exchanger Design According to the Simplified ASME Analysis Methodologies\",\"authors\":\"A. Shaw, Ian W. Jentz, Heramb P. Mahajan, T. Hassan\",\"doi\":\"10.1115/pvp2020-21547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n High thermal efficiency of Compact Heat Exchangers (CHX) makes them distinctly utile for application to Next Generation Nuclear Plants (NGNPs). The high temperature application and transient conditions of NGNP operation induce stresses in CHX. These induced stresses can be categorized under different classifications based on their cause and location. ASME Sec. III Div. 5 has different analysis methodologies based on failure modes, failure criteria to be assessed, and constitutive relationship considered. The primary objective of this study is to provide a description of the classification of stresses in CHX. Further, evaluation of CHX design is conducted according to simplified analysis methodologies in ASME Sec. III Div. 5: Elastic and Simplified Inelastic Analysis. These simplified analyses are performed following the submodeling technique. At the global level, the channeled core is replaced by an elastic orthotropic core for analysis. At the local level, the stresses and strains for critical regions are determined following the simplified analysis methods. The load controlled stresses are checked against HBB-3220 of ASME Sec. III Div. 5. For the Elastic Analysis Method, strains in critical sections in CHX are checked for thermomechanical cycle against the HBB-T-1320 of ASME Sec. III Div. 5 criteria. For Simplified Inelastic Analysis, critical sections are analyzed for strain limits following HBB-T-1330 of ASME Sec. III Div. 5. The analyses outcomes are compared and results are discussed.\",\"PeriodicalId\":150804,\"journal\":{\"name\":\"Volume 3: Design and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2020-21547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2020-21547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

紧凑型热交换器(CHX)的高热效率使其非常适用于下一代核电站(NGNPs)的应用。高温应用和NGNP运行的瞬态条件在CHX中产生应力。这些诱发应力可以根据其原因和位置进行不同的分类。ASME Sec. III Div. 5基于失效模式、要评估的失效准则和考虑本构关系有不同的分析方法。本研究的主要目的是提供对CHX应力分类的描述。此外,根据ASME第III节第5节:弹性和简化非弹性分析中的简化分析方法对CHX设计进行评估。这些简化的分析是按照子建模技术执行的。在全局水平上,通道核被弹性正交各向异性核取代以进行分析。在局部,采用简化的分析方法确定了关键区域的应力和应变。负载控制应力根据ASME第III节第5节的HBB-3220进行校核。对于弹性分析方法,CHX临界截面的应变根据ASME section III Div. 5标准的HBB-T-1320进行热机械循环检查。对于简化非弹性分析,根据ASME第III节第5节的HBB-T-1330对临界截面进行应变极限分析。对分析结果进行了比较和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of Compact Heat Exchanger Design According to the Simplified ASME Analysis Methodologies
High thermal efficiency of Compact Heat Exchangers (CHX) makes them distinctly utile for application to Next Generation Nuclear Plants (NGNPs). The high temperature application and transient conditions of NGNP operation induce stresses in CHX. These induced stresses can be categorized under different classifications based on their cause and location. ASME Sec. III Div. 5 has different analysis methodologies based on failure modes, failure criteria to be assessed, and constitutive relationship considered. The primary objective of this study is to provide a description of the classification of stresses in CHX. Further, evaluation of CHX design is conducted according to simplified analysis methodologies in ASME Sec. III Div. 5: Elastic and Simplified Inelastic Analysis. These simplified analyses are performed following the submodeling technique. At the global level, the channeled core is replaced by an elastic orthotropic core for analysis. At the local level, the stresses and strains for critical regions are determined following the simplified analysis methods. The load controlled stresses are checked against HBB-3220 of ASME Sec. III Div. 5. For the Elastic Analysis Method, strains in critical sections in CHX are checked for thermomechanical cycle against the HBB-T-1320 of ASME Sec. III Div. 5 criteria. For Simplified Inelastic Analysis, critical sections are analyzed for strain limits following HBB-T-1330 of ASME Sec. III Div. 5. The analyses outcomes are compared and results are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Study of Packed Catalyst Bed Stresses for Outward Radial Flow Reactors Alternative Design Approach by Finite Element Analysis for High Pressure Equipment A Review of Temperature Reduction Methods in Codes and Standards for Pipe Supports Elephant Foot Buckling Analysis of Large Unanchored Oil Storage Tanks With Tapered Shells Subjected to Foundation Settlement Development of Stress Intensification Factors for Collared Type Piping Joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1