平衡整体和累积的情绪分类

Q1 Social Sciences Online Social Networks and Media Pub Date : 2022-05-01 DOI:10.1016/j.osnem.2022.100199
Pantelis Agathangelou, Ioannis Katakis
{"title":"平衡整体和累积的情绪分类","authors":"Pantelis Agathangelou,&nbsp;Ioannis Katakis","doi":"10.1016/j.osnem.2022.100199","DOIUrl":null,"url":null,"abstract":"<div><p>Sentiment analysis<span><span> is a fast-accelerating discipline that develops algorithms for knowledge discovery from opinionated content. The challenges however, when it comes to analyzing user reviews are plenty. Bad-quality, informal use of language and lack of labels, are only a few obstacles. Most importantly, users, consciously or subconsciously, use different approaches for expressing their opinion about a product or a service. Some of them go sentence by sentence mentioning some positive and negative aspects whereas others provide a mixed piece of text where the reader is supposed to see the big picture to understand the message. In this work, we propose a novel neural network that deals with both situations. Our method, by combining convolutional, </span>recurrent<span> and attention neural networks can extract rich linguistic patterns that reveal the user’s sentiment towards the entity under review. We evaluate our method in nine datasets that represent both binary and multi-class classification tasks<span>. Experimental evaluation indicates that our method outperforms well-established deep learning approaches. Our approach outperformed the competitive methods in 8 out of 9 cases.</span></span></span></p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Balancing between holistic and cumulative sentiment classification\",\"authors\":\"Pantelis Agathangelou,&nbsp;Ioannis Katakis\",\"doi\":\"10.1016/j.osnem.2022.100199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sentiment analysis<span><span> is a fast-accelerating discipline that develops algorithms for knowledge discovery from opinionated content. The challenges however, when it comes to analyzing user reviews are plenty. Bad-quality, informal use of language and lack of labels, are only a few obstacles. Most importantly, users, consciously or subconsciously, use different approaches for expressing their opinion about a product or a service. Some of them go sentence by sentence mentioning some positive and negative aspects whereas others provide a mixed piece of text where the reader is supposed to see the big picture to understand the message. In this work, we propose a novel neural network that deals with both situations. Our method, by combining convolutional, </span>recurrent<span> and attention neural networks can extract rich linguistic patterns that reveal the user’s sentiment towards the entity under review. We evaluate our method in nine datasets that represent both binary and multi-class classification tasks<span>. Experimental evaluation indicates that our method outperforms well-established deep learning approaches. Our approach outperformed the competitive methods in 8 out of 9 cases.</span></span></span></p></div>\",\"PeriodicalId\":52228,\"journal\":{\"name\":\"Online Social Networks and Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online Social Networks and Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468696422000039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696422000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

摘要

情感分析是一门快速发展的学科,它开发了从自以为是的内容中发现知识的算法。然而,当涉及到分析用户评论时,挑战是很多的。语言质量差、使用不正式以及缺乏标签,这些只是少数障碍。最重要的是,用户有意识或潜意识地使用不同的方法来表达他们对产品或服务的意见。其中一些是一句一句地提到积极和消极的方面,而另一些则提供了一个混合的文本,读者应该看到大局来理解信息。在这项工作中,我们提出了一种新的神经网络来处理这两种情况。我们的方法结合了卷积、循环和注意力神经网络,可以提取丰富的语言模式,揭示用户对所审查实体的情感。我们在代表二元和多类分类任务的9个数据集中评估了我们的方法。实验评估表明,我们的方法优于成熟的深度学习方法。我们的方法在9个病例中有8个优于竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Balancing between holistic and cumulative sentiment classification

Sentiment analysis is a fast-accelerating discipline that develops algorithms for knowledge discovery from opinionated content. The challenges however, when it comes to analyzing user reviews are plenty. Bad-quality, informal use of language and lack of labels, are only a few obstacles. Most importantly, users, consciously or subconsciously, use different approaches for expressing their opinion about a product or a service. Some of them go sentence by sentence mentioning some positive and negative aspects whereas others provide a mixed piece of text where the reader is supposed to see the big picture to understand the message. In this work, we propose a novel neural network that deals with both situations. Our method, by combining convolutional, recurrent and attention neural networks can extract rich linguistic patterns that reveal the user’s sentiment towards the entity under review. We evaluate our method in nine datasets that represent both binary and multi-class classification tasks. Experimental evaluation indicates that our method outperforms well-established deep learning approaches. Our approach outperformed the competitive methods in 8 out of 9 cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
期刊最新文献
How does user-generated content on Social Media affect stock predictions? A case study on GameStop Measuring centralization of online platforms through size and interconnection of communities Crowdsourcing the Mitigation of disinformation and misinformation: The case of spontaneous community-based moderation on Reddit GASCOM: Graph-based Attentive Semantic Context Modeling for Online Conversation Understanding The influence of coordinated behavior on toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1