基于TextBlob和BiLSTM的COVID-19疫苗情感分析

Nabiollah Mansouri, M. Soui, Ibrahim Alhassan, Mourad Abed
{"title":"基于TextBlob和BiLSTM的COVID-19疫苗情感分析","authors":"Nabiollah Mansouri, M. Soui, Ibrahim Alhassan, Mourad Abed","doi":"10.1109/CDMA54072.2022.00017","DOIUrl":null,"url":null,"abstract":"Nowadays, social media like Twitter, play a vital role in our life since it is a source of swapping views, thoughts, and feelings towards many issues such as the global pandemic covid-19. Nevertheless, it can a source of diffusion of fake news which can affect negatively the opinions of many people and even change their thoughts behind a lot of sensitive situations such as the COVID-19 vaccines. In this context, it is crucial for public health agencies to understand and identify people's opinions and views toward COVID-19 vaccines. To this end, we propose our model to classify the tweets of people into three classes, negative, neutral, and positive. In fact, we considered a large dataset extracted from Twitter includes 174490 tweets. Tweet analysis was conducted by TextBlob to categorize the sentiment and the Bidirectional LSTM model to classify the sentiments. The proposed model was compared with other studied machine learning classifiers and deep learning algorithms. The aim of this work also is to select the best model between the studied model that is suitable for the sentiment analysis for COVID-19 vaccines. BiLSTM outperformed the other studied models with ahigh accuracy rate of 94.12%.","PeriodicalId":313042,"journal":{"name":"2022 7th International Conference on Data Science and Machine Learning Applications (CDMA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"TextBlob and BiLSTM for Sentiment analysis toward COVID-19 vaccines\",\"authors\":\"Nabiollah Mansouri, M. Soui, Ibrahim Alhassan, Mourad Abed\",\"doi\":\"10.1109/CDMA54072.2022.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, social media like Twitter, play a vital role in our life since it is a source of swapping views, thoughts, and feelings towards many issues such as the global pandemic covid-19. Nevertheless, it can a source of diffusion of fake news which can affect negatively the opinions of many people and even change their thoughts behind a lot of sensitive situations such as the COVID-19 vaccines. In this context, it is crucial for public health agencies to understand and identify people's opinions and views toward COVID-19 vaccines. To this end, we propose our model to classify the tweets of people into three classes, negative, neutral, and positive. In fact, we considered a large dataset extracted from Twitter includes 174490 tweets. Tweet analysis was conducted by TextBlob to categorize the sentiment and the Bidirectional LSTM model to classify the sentiments. The proposed model was compared with other studied machine learning classifiers and deep learning algorithms. The aim of this work also is to select the best model between the studied model that is suitable for the sentiment analysis for COVID-19 vaccines. BiLSTM outperformed the other studied models with ahigh accuracy rate of 94.12%.\",\"PeriodicalId\":313042,\"journal\":{\"name\":\"2022 7th International Conference on Data Science and Machine Learning Applications (CDMA)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Data Science and Machine Learning Applications (CDMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDMA54072.2022.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Data Science and Machine Learning Applications (CDMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDMA54072.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

如今,像推特这样的社交媒体在我们的生活中发挥着至关重要的作用,因为它是对全球大流行covid-19等许多问题交换观点,想法和感受的来源。然而,它可能成为假新闻传播的来源,这会对许多人的看法产生负面影响,甚至在新冠病毒疫苗等许多敏感事件背后改变人们的想法。在这种情况下,公共卫生机构了解和确定人们对COVID-19疫苗的意见和看法至关重要。为此,我们提出了我们的模型,将人们的推文分为消极、中性和积极三类。事实上,我们考虑从Twitter提取的大型数据集包括174490条tweet。使用TextBlob对Tweet进行情感分类,使用Bidirectional LSTM模型对Tweet进行情感分类。将该模型与其他机器学习分类器和深度学习算法进行了比较。本工作的目的也是在所研究的模型之间选择适合COVID-19疫苗情绪分析的最佳模型。BiLSTM的准确率高达94.12%,优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TextBlob and BiLSTM for Sentiment analysis toward COVID-19 vaccines
Nowadays, social media like Twitter, play a vital role in our life since it is a source of swapping views, thoughts, and feelings towards many issues such as the global pandemic covid-19. Nevertheless, it can a source of diffusion of fake news which can affect negatively the opinions of many people and even change their thoughts behind a lot of sensitive situations such as the COVID-19 vaccines. In this context, it is crucial for public health agencies to understand and identify people's opinions and views toward COVID-19 vaccines. To this end, we propose our model to classify the tweets of people into three classes, negative, neutral, and positive. In fact, we considered a large dataset extracted from Twitter includes 174490 tweets. Tweet analysis was conducted by TextBlob to categorize the sentiment and the Bidirectional LSTM model to classify the sentiments. The proposed model was compared with other studied machine learning classifiers and deep learning algorithms. The aim of this work also is to select the best model between the studied model that is suitable for the sentiment analysis for COVID-19 vaccines. BiLSTM outperformed the other studied models with ahigh accuracy rate of 94.12%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Accuracy Performance of Semantic Segmentation Network with Different Backbones On the Capabilities of Quantum Machine Learning Machine Learning Algorithms for Detection of Noisy/Artifact-Corrupted Epochs of Visual Oddball Paradigm ERP Data Deep Learning for Classifying of White Blood Cancer Machine Learning Based Preemptive Diagnosis of Lung Cancer Using Clinical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1