数据库操作的硬件加速

J. Casper, K. Olukotun
{"title":"数据库操作的硬件加速","authors":"J. Casper, K. Olukotun","doi":"10.1145/2554688.2554787","DOIUrl":null,"url":null,"abstract":"As the amount of memory in database systems grows, entire database tables, or even databases, are able to fit in the system's memory, making in-memory database operations more prevalent. This shift from disk-based to in-memory database systems has contributed to a move from row-wise to columnar data storage. Furthermore, common database workloads have grown beyond online transaction processing (OLTP) to include online analytical processing and data mining. These workloads analyze huge datasets that are often irregular and not indexed, making traditional database operations like joins much more expensive. In this paper we explore using dedicated hardware to accelerate in-memory database operations. We present hardware to accelerate the selection process of compacting a single column into a linear column of selected data, joining two sorted columns via merging, and sorting a column. Finally, we put these primitives together to accelerate an entire join operation. We implement a prototype of this system using FPGAs and show substantial improvements in both absolute throughput and utilization of memory bandwidth. Using the prototype as a guide, we explore how the hardware resources required by our design change with the desired throughput.","PeriodicalId":390562,"journal":{"name":"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"173","resultStr":"{\"title\":\"Hardware acceleration of database operations\",\"authors\":\"J. Casper, K. Olukotun\",\"doi\":\"10.1145/2554688.2554787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the amount of memory in database systems grows, entire database tables, or even databases, are able to fit in the system's memory, making in-memory database operations more prevalent. This shift from disk-based to in-memory database systems has contributed to a move from row-wise to columnar data storage. Furthermore, common database workloads have grown beyond online transaction processing (OLTP) to include online analytical processing and data mining. These workloads analyze huge datasets that are often irregular and not indexed, making traditional database operations like joins much more expensive. In this paper we explore using dedicated hardware to accelerate in-memory database operations. We present hardware to accelerate the selection process of compacting a single column into a linear column of selected data, joining two sorted columns via merging, and sorting a column. Finally, we put these primitives together to accelerate an entire join operation. We implement a prototype of this system using FPGAs and show substantial improvements in both absolute throughput and utilization of memory bandwidth. Using the prototype as a guide, we explore how the hardware resources required by our design change with the desired throughput.\",\"PeriodicalId\":390562,\"journal\":{\"name\":\"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"173\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2554688.2554787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554688.2554787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 173

摘要

随着数据库系统中内存量的增长,整个数据库表甚至数据库都可以装入系统内存,从而使内存中的数据库操作更加普遍。这种从基于磁盘的数据库系统到内存数据库系统的转变促成了从逐行数据存储到列数据存储的转变。此外,常见的数据库工作负载已经超出了在线事务处理(OLTP)的范围,包括在线分析处理和数据挖掘。这些工作负载分析的庞大数据集通常是不规则的,而且没有索引,这使得传统的数据库操作(如连接)的成本要高得多。在本文中,我们探索使用专用硬件来加速内存中的数据库操作。我们提供硬件来加速选择过程,包括将单个列压缩为所选数据的线性列,通过合并连接两个排序的列,以及对列进行排序。最后,我们将这些原语放在一起以加速整个连接操作。我们使用fpga实现了该系统的原型,并在绝对吞吐量和内存带宽利用率方面都有了实质性的改进。以原型为指导,我们将探索设计所需的硬件资源如何随着期望的吞吐量而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware acceleration of database operations
As the amount of memory in database systems grows, entire database tables, or even databases, are able to fit in the system's memory, making in-memory database operations more prevalent. This shift from disk-based to in-memory database systems has contributed to a move from row-wise to columnar data storage. Furthermore, common database workloads have grown beyond online transaction processing (OLTP) to include online analytical processing and data mining. These workloads analyze huge datasets that are often irregular and not indexed, making traditional database operations like joins much more expensive. In this paper we explore using dedicated hardware to accelerate in-memory database operations. We present hardware to accelerate the selection process of compacting a single column into a linear column of selected data, joining two sorted columns via merging, and sorting a column. Finally, we put these primitives together to accelerate an entire join operation. We implement a prototype of this system using FPGAs and show substantial improvements in both absolute throughput and utilization of memory bandwidth. Using the prototype as a guide, we explore how the hardware resources required by our design change with the desired throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy-efficient multiplier-less discrete convolver through probabilistic domain transformation Revisiting and-inverter cones Pushing the performance boundary of linear projection designs through device specific optimisations (abstract only) MORP: makespan optimization for processors with an embedded reconfigurable fabric Co-processing with dynamic reconfiguration on heterogeneous MPSoC: practices and design tradeoffs (abstract only)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1