二值表示遗传算法和类pbil算法的收敛性预测方法

E. Sopov, S. A. Sopov
{"title":"二值表示遗传算法和类pbil算法的收敛性预测方法","authors":"E. Sopov, S. A. Sopov","doi":"10.1109/SIBCON.2011.6072632","DOIUrl":null,"url":null,"abstract":"Genetic algorithms (GA) are stochastic search procedures which have been used for solving many complex optimization problems. It is obvious that GA collect and exploit some statistical information about the search space, but this information isn't processed in explicit way. In this paper, we consider GA with binary representation and its explicit statistics in a form of probability distribution of unit-values. The binary GA convergence property is discussed and a new convergence prediction method is proposed. The results of the prediction algorithm effectiveness investigation over the set of complex continuous and discrete deceptive problems are presented.","PeriodicalId":169606,"journal":{"name":"2011 International Siberian Conference on Control and Communications (SIBCON)","volume":"718 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The convergence prediction method for genetic and PBIL-like algorithms with binary representation\",\"authors\":\"E. Sopov, S. A. Sopov\",\"doi\":\"10.1109/SIBCON.2011.6072632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic algorithms (GA) are stochastic search procedures which have been used for solving many complex optimization problems. It is obvious that GA collect and exploit some statistical information about the search space, but this information isn't processed in explicit way. In this paper, we consider GA with binary representation and its explicit statistics in a form of probability distribution of unit-values. The binary GA convergence property is discussed and a new convergence prediction method is proposed. The results of the prediction algorithm effectiveness investigation over the set of complex continuous and discrete deceptive problems are presented.\",\"PeriodicalId\":169606,\"journal\":{\"name\":\"2011 International Siberian Conference on Control and Communications (SIBCON)\",\"volume\":\"718 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Siberian Conference on Control and Communications (SIBCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBCON.2011.6072632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Siberian Conference on Control and Communications (SIBCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON.2011.6072632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

遗传算法(GA)是一种随机搜索程序,已被用于解决许多复杂的优化问题。显然,GA收集和利用了一些关于搜索空间的统计信息,但是这些信息没有以显式的方式处理。本文以单位值概率分布的形式考虑具有二进制表示的遗传算法及其显式统计量。讨论了二值遗传算法的收敛性,提出了一种新的收敛性预测方法。给出了该预测算法在复杂连续和离散欺骗问题集上的有效性研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The convergence prediction method for genetic and PBIL-like algorithms with binary representation
Genetic algorithms (GA) are stochastic search procedures which have been used for solving many complex optimization problems. It is obvious that GA collect and exploit some statistical information about the search space, but this information isn't processed in explicit way. In this paper, we consider GA with binary representation and its explicit statistics in a form of probability distribution of unit-values. The binary GA convergence property is discussed and a new convergence prediction method is proposed. The results of the prediction algorithm effectiveness investigation over the set of complex continuous and discrete deceptive problems are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaAs:Cr X-ray pixel detectors Hardware-software complex for acoustic emission spectral analyzing Design and implementation antenna for small UAV Design, modeling and open-loop control of a BCF mode bio-mimetic robotic fish Development and experimental investigation of digital MSK-signal receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1