Qi Zhang, Ling Liu, Kisung Lee, Yang Zhou, Aameek Singh, N. Mandagere, Sandeep Gopisetty, Gabriel Alatorre
{"title":"改进地理分布式云中的Hadoop服务发放","authors":"Qi Zhang, Ling Liu, Kisung Lee, Yang Zhou, Aameek Singh, N. Mandagere, Sandeep Gopisetty, Gabriel Alatorre","doi":"10.1109/CLOUD.2014.65","DOIUrl":null,"url":null,"abstract":"With more data generated and collected in a geographically distributed manner, combined by the increased computational requirements for large scale data-intensive analysis, we have witnessed the growing demand for geographically distributed Cloud datacenters and hybrid Cloud service provisioning, enabling organizations to support instantaneous demand of additional computational resources and to expand inhouse resources to maintain peak service demands by utilizing cloud resources. A key challenge for running applications in such a geographically distributed computing environment is how to efficiently schedule and perform analysis over data that is geographically distributed across multiple datacenters. In this paper, we first compare multi-datacenter Hadoop deployment with single-datacenter Hadoop deployment to identify the performance issues inherent in a geographically distributed cloud. A generalization of the problem characterization in the context of geographically distributed cloud datacenters is also provided with discussions on general optimization strategies. Then we describe the design and implementation of a suite of system-level optimizations for improving performance of Hadoop service provisioning in a geo-distributed cloud, including prediction-based job localization, configurable HDFS data placement, and data prefetching. Our experimental evaluation shows that our prediction based localization has very low error ratio, smaller than 5%, and our optimization can improve the execution time of Reduce phase by 48.6%.","PeriodicalId":288542,"journal":{"name":"2014 IEEE 7th International Conference on Cloud Computing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Improving Hadoop Service Provisioning in a Geographically Distributed Cloud\",\"authors\":\"Qi Zhang, Ling Liu, Kisung Lee, Yang Zhou, Aameek Singh, N. Mandagere, Sandeep Gopisetty, Gabriel Alatorre\",\"doi\":\"10.1109/CLOUD.2014.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With more data generated and collected in a geographically distributed manner, combined by the increased computational requirements for large scale data-intensive analysis, we have witnessed the growing demand for geographically distributed Cloud datacenters and hybrid Cloud service provisioning, enabling organizations to support instantaneous demand of additional computational resources and to expand inhouse resources to maintain peak service demands by utilizing cloud resources. A key challenge for running applications in such a geographically distributed computing environment is how to efficiently schedule and perform analysis over data that is geographically distributed across multiple datacenters. In this paper, we first compare multi-datacenter Hadoop deployment with single-datacenter Hadoop deployment to identify the performance issues inherent in a geographically distributed cloud. A generalization of the problem characterization in the context of geographically distributed cloud datacenters is also provided with discussions on general optimization strategies. Then we describe the design and implementation of a suite of system-level optimizations for improving performance of Hadoop service provisioning in a geo-distributed cloud, including prediction-based job localization, configurable HDFS data placement, and data prefetching. Our experimental evaluation shows that our prediction based localization has very low error ratio, smaller than 5%, and our optimization can improve the execution time of Reduce phase by 48.6%.\",\"PeriodicalId\":288542,\"journal\":{\"name\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2014.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2014.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Hadoop Service Provisioning in a Geographically Distributed Cloud
With more data generated and collected in a geographically distributed manner, combined by the increased computational requirements for large scale data-intensive analysis, we have witnessed the growing demand for geographically distributed Cloud datacenters and hybrid Cloud service provisioning, enabling organizations to support instantaneous demand of additional computational resources and to expand inhouse resources to maintain peak service demands by utilizing cloud resources. A key challenge for running applications in such a geographically distributed computing environment is how to efficiently schedule and perform analysis over data that is geographically distributed across multiple datacenters. In this paper, we first compare multi-datacenter Hadoop deployment with single-datacenter Hadoop deployment to identify the performance issues inherent in a geographically distributed cloud. A generalization of the problem characterization in the context of geographically distributed cloud datacenters is also provided with discussions on general optimization strategies. Then we describe the design and implementation of a suite of system-level optimizations for improving performance of Hadoop service provisioning in a geo-distributed cloud, including prediction-based job localization, configurable HDFS data placement, and data prefetching. Our experimental evaluation shows that our prediction based localization has very low error ratio, smaller than 5%, and our optimization can improve the execution time of Reduce phase by 48.6%.