基于Gibbs采样的二维藤状结构提取方法

Ricardo D. C. Marin, T. Botterill, R. Green
{"title":"基于Gibbs采样的二维藤状结构提取方法","authors":"Ricardo D. C. Marin, T. Botterill, R. Green","doi":"10.1109/ICARA.2015.7081192","DOIUrl":null,"url":null,"abstract":"In this paper we are interested in recovering 2D tree structure of vines from binary images. We propose a bottom-up approach that firstly segments an input image into cane parts, and second infer their connectivity by using Gibbs Sampling. Our approach is similar to previous work on vine structure inference [1], but instead of the use of heuristics for connecting cane parts, our method uses Gibbs sampling which has been successfully used in similar computer vision tasks [2]. We show comparative results against [1], and we provide directions on how this work could be extended in the future.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gibbs sampling for 2D cane structure extraction from images\",\"authors\":\"Ricardo D. C. Marin, T. Botterill, R. Green\",\"doi\":\"10.1109/ICARA.2015.7081192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are interested in recovering 2D tree structure of vines from binary images. We propose a bottom-up approach that firstly segments an input image into cane parts, and second infer their connectivity by using Gibbs Sampling. Our approach is similar to previous work on vine structure inference [1], but instead of the use of heuristics for connecting cane parts, our method uses Gibbs sampling which has been successfully used in similar computer vision tasks [2]. We show comparative results against [1], and we provide directions on how this work could be extended in the future.\",\"PeriodicalId\":176657,\"journal\":{\"name\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA.2015.7081192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们感兴趣的是从二值图像中恢复二维树形结构的藤本植物。我们提出了一种自下而上的方法,首先将输入图像分割成几个部分,然后通过吉布斯采样来推断它们的连通性。我们的方法类似于之前在藤结构推理方面的工作[1],但我们的方法不是使用启发式方法来连接藤部件,而是使用Gibbs采样,该方法已成功用于类似的计算机视觉任务[2]。我们展示了与[1]的比较结果,并提供了如何在未来扩展这项工作的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gibbs sampling for 2D cane structure extraction from images
In this paper we are interested in recovering 2D tree structure of vines from binary images. We propose a bottom-up approach that firstly segments an input image into cane parts, and second infer their connectivity by using Gibbs Sampling. Our approach is similar to previous work on vine structure inference [1], but instead of the use of heuristics for connecting cane parts, our method uses Gibbs sampling which has been successfully used in similar computer vision tasks [2]. We show comparative results against [1], and we provide directions on how this work could be extended in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated weighing by sequential inference in dynamic environments Implementing a HARMS-based software system for use in collective robotics applications Concepts and simulations of a soft robot mimicking human tongue Application of Inverse Simulation to a wheeled mobile robot Design and experimental testing of vehicle-following control for small electric vehicles with communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1