在基于内容的图像检索中增强全局特征的空间金字塔

M. Lux, N. Anagnostopoulos, C. Iakovidou
{"title":"在基于内容的图像检索中增强全局特征的空间金字塔","authors":"M. Lux, N. Anagnostopoulos, C. Iakovidou","doi":"10.1109/CBMI.2016.7500248","DOIUrl":null,"url":null,"abstract":"Image retrieval deals with the problem of finding relevant images to satisfy a specific user need. Many methods for content based image retrieval have been developed over the years, ranging from global to local features and, lately, to convolutional neural networks. Each of the approaches has its own benefits and drawbacks, but they also have similarities. In this paper we investigate how a method initially developed for local features, pyramid matching, then employed on texture features, spatial pyramids, can enhance general global features. We apply a spatial pyramid based approach to add spatial information to well known and established global descriptors, and present the results of an extensive evaluation that shows that this combination is able to outperform the original versions of the global features.","PeriodicalId":356608,"journal":{"name":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spatial pyramids for boosting global features in content based image retrieval\",\"authors\":\"M. Lux, N. Anagnostopoulos, C. Iakovidou\",\"doi\":\"10.1109/CBMI.2016.7500248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image retrieval deals with the problem of finding relevant images to satisfy a specific user need. Many methods for content based image retrieval have been developed over the years, ranging from global to local features and, lately, to convolutional neural networks. Each of the approaches has its own benefits and drawbacks, but they also have similarities. In this paper we investigate how a method initially developed for local features, pyramid matching, then employed on texture features, spatial pyramids, can enhance general global features. We apply a spatial pyramid based approach to add spatial information to well known and established global descriptors, and present the results of an extensive evaluation that shows that this combination is able to outperform the original versions of the global features.\",\"PeriodicalId\":356608,\"journal\":{\"name\":\"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2016.7500248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2016.7500248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

图像检索处理的问题是找到相关的图像,以满足特定的用户需求。多年来,人们开发了许多基于内容的图像检索方法,从全局特征到局部特征,以及最近的卷积神经网络。每种方法都有自己的优点和缺点,但它们也有相似之处。在本文中,我们研究了一种最初用于局部特征,金字塔匹配的方法,然后用于纹理特征,空间金字塔,如何增强一般的全局特征。我们采用基于空间金字塔的方法将空间信息添加到已知和已建立的全局描述符中,并提出了广泛评估的结果,表明这种组合能够优于原始版本的全局特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial pyramids for boosting global features in content based image retrieval
Image retrieval deals with the problem of finding relevant images to satisfy a specific user need. Many methods for content based image retrieval have been developed over the years, ranging from global to local features and, lately, to convolutional neural networks. Each of the approaches has its own benefits and drawbacks, but they also have similarities. In this paper we investigate how a method initially developed for local features, pyramid matching, then employed on texture features, spatial pyramids, can enhance general global features. We apply a spatial pyramid based approach to add spatial information to well known and established global descriptors, and present the results of an extensive evaluation that shows that this combination is able to outperform the original versions of the global features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Music Tweet Map: A browsing interface to explore the microblogosphere of music A novel architecture of semantic web reasoner based on transferable belief model Simple tag-based subclass representations for visually-varied image classes Crowdsourcing as self-fulfilling prophecy: Influence of discarding workers in subjective assessment tasks EIR — Efficient computer aided diagnosis framework for gastrointestinal endoscopies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1