使用解纠缠表示学习的受控直流电机时间序列数据转换

Hiba Arnout, Johanna Bronner, J. Kehrer, T. Runkler
{"title":"使用解纠缠表示学习的受控直流电机时间序列数据转换","authors":"Hiba Arnout, Johanna Bronner, J. Kehrer, T. Runkler","doi":"10.1109/SSCI50451.2021.9660007","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of translating time series of one controlled DC motor to imitate time series from another motor. Our main goal is to test different controllers and find the best performing controller for a motor operating in the field without knowing its mathematical model. By means of representation disentanglement, we present a new approach that splits the time series of each control system into two representation vectors: a first vector depicting the motor characteristics and its operating mode and a second vector describing the controller effect. We test our method on a scenario where we simulate the behavior of two different controlled DC motors. We map the behavior of a controller of a lab motor to a field motor. The experiments show that DR-TiST can recognize motor and controller characteristics and predict the right behavior.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translation of Time Series Data from Controlled DC Motors using Disentangled Representation Learning\",\"authors\":\"Hiba Arnout, Johanna Bronner, J. Kehrer, T. Runkler\",\"doi\":\"10.1109/SSCI50451.2021.9660007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of translating time series of one controlled DC motor to imitate time series from another motor. Our main goal is to test different controllers and find the best performing controller for a motor operating in the field without knowing its mathematical model. By means of representation disentanglement, we present a new approach that splits the time series of each control system into two representation vectors: a first vector depicting the motor characteristics and its operating mode and a second vector describing the controller effect. We test our method on a scenario where we simulate the behavior of two different controlled DC motors. We map the behavior of a controller of a lab motor to a field motor. The experiments show that DR-TiST can recognize motor and controller characteristics and predict the right behavior.\",\"PeriodicalId\":255763,\"journal\":{\"name\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI50451.2021.9660007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了转换一个被控制的直流电机的时间序列来模仿另一个电机的时间序列的问题。我们的主要目标是测试不同的控制器,并在不知道其数学模型的情况下,为在现场运行的电机找到性能最佳的控制器。通过表征解纠缠,我们提出了一种新的方法,将每个控制系统的时间序列分成两个表征向量:第一个向量描述电机特性及其运行模式,第二个向量描述控制器效果。我们在一个场景中测试我们的方法,我们模拟了两个不同的受控直流电机的行为。我们将实验室电机控制器的行为映射到现场电机。实验表明,DR-TiST能够识别电机和控制器的特性,并预测正确的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Translation of Time Series Data from Controlled DC Motors using Disentangled Representation Learning
In this paper, we consider the problem of translating time series of one controlled DC motor to imitate time series from another motor. Our main goal is to test different controllers and find the best performing controller for a motor operating in the field without knowing its mathematical model. By means of representation disentanglement, we present a new approach that splits the time series of each control system into two representation vectors: a first vector depicting the motor characteristics and its operating mode and a second vector describing the controller effect. We test our method on a scenario where we simulate the behavior of two different controlled DC motors. We map the behavior of a controller of a lab motor to a field motor. The experiments show that DR-TiST can recognize motor and controller characteristics and predict the right behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1