基于眼电图的认知语境识别

Shreyasi Datta, A. Banerjee, A. Konar, D. Tibarewala
{"title":"基于眼电图的认知语境识别","authors":"Shreyasi Datta, A. Banerjee, A. Konar, D. Tibarewala","doi":"10.1109/ICECI.2014.6767362","DOIUrl":null,"url":null,"abstract":"Recognition of cognitive context is an important aspect of context aware pervasive computing systems. The present work is aimed at identification of cognitive contexts of human beings from the analysis of their eye movements by acquiring Electrooculogram signals. These signals are represented through Adaptive Autoregressive Parameters, Hjorth Parameters and Wavelet Coefficients as signal features. Classification of the obtained feature spaces is carried out using Support Vector Machine with Radial Basis Function Kernel to distinctly identify a particular class of activity defining a person's cognitive context, achieving an average recognition accuracy of 91.825% for eight types of cognitive activities.","PeriodicalId":315219,"journal":{"name":"International Conference on Electronics, Communication and Instrumentation (ICECI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electrooculogram based cognitive context recognition\",\"authors\":\"Shreyasi Datta, A. Banerjee, A. Konar, D. Tibarewala\",\"doi\":\"10.1109/ICECI.2014.6767362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition of cognitive context is an important aspect of context aware pervasive computing systems. The present work is aimed at identification of cognitive contexts of human beings from the analysis of their eye movements by acquiring Electrooculogram signals. These signals are represented through Adaptive Autoregressive Parameters, Hjorth Parameters and Wavelet Coefficients as signal features. Classification of the obtained feature spaces is carried out using Support Vector Machine with Radial Basis Function Kernel to distinctly identify a particular class of activity defining a person's cognitive context, achieving an average recognition accuracy of 91.825% for eight types of cognitive activities.\",\"PeriodicalId\":315219,\"journal\":{\"name\":\"International Conference on Electronics, Communication and Instrumentation (ICECI)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electronics, Communication and Instrumentation (ICECI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECI.2014.6767362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronics, Communication and Instrumentation (ICECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECI.2014.6767362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

认知上下文识别是上下文感知普适计算系统的一个重要方面。本研究的目的是通过获取眼电图信号来分析人的眼球运动,从而识别人的认知语境。这些信号通过自适应自回归参数、Hjorth参数和小波系数作为信号特征来表示。利用径向基函数核的支持向量机对得到的特征空间进行分类,清晰地识别出定义人的认知语境的特定类别的活动,对8类认知活动的平均识别准确率达到91.825%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrooculogram based cognitive context recognition
Recognition of cognitive context is an important aspect of context aware pervasive computing systems. The present work is aimed at identification of cognitive contexts of human beings from the analysis of their eye movements by acquiring Electrooculogram signals. These signals are represented through Adaptive Autoregressive Parameters, Hjorth Parameters and Wavelet Coefficients as signal features. Classification of the obtained feature spaces is carried out using Support Vector Machine with Radial Basis Function Kernel to distinctly identify a particular class of activity defining a person's cognitive context, achieving an average recognition accuracy of 91.825% for eight types of cognitive activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of conductivity effects in 2D electrical tomography systems: a simulation study Design of missile autopilot using backstepping controller Performance enhancement of object shape classification by coupling tactile sensing with EEG Facial expression and EEG signal based classification of emotion Performance of an IDS in an Adhoc Network under Black Hole and Gray Hole attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1