基于粒子群优化算法的无距离定位算法与DV-Hop算法的比较

J. Mass-Sanchez, E. Ruiz-Ibarra, A. Espinoza-Ruiz, L. R. Domínguez
{"title":"基于粒子群优化算法的无距离定位算法与DV-Hop算法的比较","authors":"J. Mass-Sanchez, E. Ruiz-Ibarra, A. Espinoza-Ruiz, L. R. Domínguez","doi":"10.1109/UEMCON.2017.8249016","DOIUrl":null,"url":null,"abstract":"Localization is a priority problem in Wireless Sensor Networks (WSNs), since this provides the necessary information about where an event occurs. In this paper we evaluates different variants of range-free localization techniques such as DV-Hop and WDV-Hop using Hyperbolic and Weighted Hyperbolic positioning algorithms as well as the DV-Hop algorithm with PSO (Particle Swarm Optimization) algorithm. The localization algorithms are evaluated in three scenarios, where the number of RNs (References Nodes), the node density and the radio range are varied. The results obtained through the simulations show that the DV-Hop algorithm with PSO presents better performance in terms of accuracy and precision with respect to the DV-Hop and WDV-Hop algorithms using the Hyperbolic and Weighted Hyperbolic positioning algorithms in the proposed assessment scenarios.","PeriodicalId":403890,"journal":{"name":"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A comparative of range free localization algorithms and DV-Hop using the Particle Swarm Optimization algorithm\",\"authors\":\"J. Mass-Sanchez, E. Ruiz-Ibarra, A. Espinoza-Ruiz, L. R. Domínguez\",\"doi\":\"10.1109/UEMCON.2017.8249016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localization is a priority problem in Wireless Sensor Networks (WSNs), since this provides the necessary information about where an event occurs. In this paper we evaluates different variants of range-free localization techniques such as DV-Hop and WDV-Hop using Hyperbolic and Weighted Hyperbolic positioning algorithms as well as the DV-Hop algorithm with PSO (Particle Swarm Optimization) algorithm. The localization algorithms are evaluated in three scenarios, where the number of RNs (References Nodes), the node density and the radio range are varied. The results obtained through the simulations show that the DV-Hop algorithm with PSO presents better performance in terms of accuracy and precision with respect to the DV-Hop and WDV-Hop algorithms using the Hyperbolic and Weighted Hyperbolic positioning algorithms in the proposed assessment scenarios.\",\"PeriodicalId\":403890,\"journal\":{\"name\":\"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON.2017.8249016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON.2017.8249016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

定位是无线传感器网络(wsn)中的一个优先问题,因为它提供了关于事件发生位置的必要信息。在本文中,我们评估了不同变体的无距离定位技术,如使用双曲和加权双曲定位算法的DV-Hop和WDV-Hop,以及使用PSO(粒子群优化)算法的DV-Hop算法。在参考节点数量、节点密度和无线电范围不同的三种情况下,对定位算法进行了评估。仿真结果表明,在所提出的评估场景中,基于PSO的DV-Hop算法在精度和精密度方面都优于基于双曲和加权双曲定位算法的DV-Hop和WDV-Hop算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative of range free localization algorithms and DV-Hop using the Particle Swarm Optimization algorithm
Localization is a priority problem in Wireless Sensor Networks (WSNs), since this provides the necessary information about where an event occurs. In this paper we evaluates different variants of range-free localization techniques such as DV-Hop and WDV-Hop using Hyperbolic and Weighted Hyperbolic positioning algorithms as well as the DV-Hop algorithm with PSO (Particle Swarm Optimization) algorithm. The localization algorithms are evaluated in three scenarios, where the number of RNs (References Nodes), the node density and the radio range are varied. The results obtained through the simulations show that the DV-Hop algorithm with PSO presents better performance in terms of accuracy and precision with respect to the DV-Hop and WDV-Hop algorithms using the Hyperbolic and Weighted Hyperbolic positioning algorithms in the proposed assessment scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated facial expression recognition app development on smart phones using cloud computing Outage probability and system optimization of SSD-based dual-hop relaying system with multiple relays LTE fallback optimization using decision tree Bio-medical image enhancement using hybrid metaheuristic coupled soft computing tools Study of a parallel algorithm on pipelined computation of the finite difference schemes on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1