{"title":"组件模式合成中的兼容接口","authors":"P. Masarati, Fanny Darbas, I. Wander","doi":"10.1115/detc2020-22255","DOIUrl":null,"url":null,"abstract":"\n Substructuring, or component mode synthesis, requires components to share interface regions. When components modeled with rather different, often incompatible levels of refinement need to be connected, correctly defining the interfaces may be important. This work proposes the definition of the reduction of interface regions to the equivalent rigid-body motion which minimizes the strain energy in the structural component. The proposed formulation provides a natural and physically sound solution for the connection of detailed structural components within coarse, multi-rigid-body and 1D flexible models.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compliant Interface in Component Mode Synthesis\",\"authors\":\"P. Masarati, Fanny Darbas, I. Wander\",\"doi\":\"10.1115/detc2020-22255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Substructuring, or component mode synthesis, requires components to share interface regions. When components modeled with rather different, often incompatible levels of refinement need to be connected, correctly defining the interfaces may be important. This work proposes the definition of the reduction of interface regions to the equivalent rigid-body motion which minimizes the strain energy in the structural component. The proposed formulation provides a natural and physically sound solution for the connection of detailed structural components within coarse, multi-rigid-body and 1D flexible models.\",\"PeriodicalId\":236538,\"journal\":{\"name\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Substructuring, or component mode synthesis, requires components to share interface regions. When components modeled with rather different, often incompatible levels of refinement need to be connected, correctly defining the interfaces may be important. This work proposes the definition of the reduction of interface regions to the equivalent rigid-body motion which minimizes the strain energy in the structural component. The proposed formulation provides a natural and physically sound solution for the connection of detailed structural components within coarse, multi-rigid-body and 1D flexible models.