粒子群算法在运输连续网络设计中的应用

Meng Xu, Jin Yang, Ziyou Gao
{"title":"粒子群算法在运输连续网络设计中的应用","authors":"Meng Xu, Jin Yang, Ziyou Gao","doi":"10.1109/CSO.2010.53","DOIUrl":null,"url":null,"abstract":"We propose particle swarm optimization (PSO) algorithm for solving transport continuous network design problems (CNDP), and give sensitivity analysis for the parameters used in PSO. The CNDP is formulated as a bi-level programming model. The sensitivity analysis method, one-at-a-time designs (OATD), is used to analyze the effects of parameters. Numerical example demonstrates that PSO is an effective algorithm for solving CNDP with proper parameters setting. The choice of swarm size has a clear effect to the implementation time and with small swarm size may fail to the optimal solution. Furthermore, inertia weight and maximum velocity has clear effects to the solution searching.","PeriodicalId":427481,"journal":{"name":"2010 Third International Joint Conference on Computational Science and Optimization","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Particle Swarm Optimization Algorithm in Transport Continuous Network Design Problems\",\"authors\":\"Meng Xu, Jin Yang, Ziyou Gao\",\"doi\":\"10.1109/CSO.2010.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose particle swarm optimization (PSO) algorithm for solving transport continuous network design problems (CNDP), and give sensitivity analysis for the parameters used in PSO. The CNDP is formulated as a bi-level programming model. The sensitivity analysis method, one-at-a-time designs (OATD), is used to analyze the effects of parameters. Numerical example demonstrates that PSO is an effective algorithm for solving CNDP with proper parameters setting. The choice of swarm size has a clear effect to the implementation time and with small swarm size may fail to the optimal solution. Furthermore, inertia weight and maximum velocity has clear effects to the solution searching.\",\"PeriodicalId\":427481,\"journal\":{\"name\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2010.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Joint Conference on Computational Science and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2010.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了求解运输连续网络设计问题的粒子群优化算法,并对算法中所使用的参数进行了灵敏度分析。CNDP是一个双层规划模型。采用单次设计(one-at-a-time designs, OATD)的灵敏度分析方法来分析参数的影响。数值算例表明,粒子群算法在合理设置参数的情况下是求解CNDP问题的有效算法。群体规模的选择对实施时间有明显的影响,当群体规模较小时,可能无法得到最优解。惯性权值和最大速度对解的搜索有明显的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particle Swarm Optimization Algorithm in Transport Continuous Network Design Problems
We propose particle swarm optimization (PSO) algorithm for solving transport continuous network design problems (CNDP), and give sensitivity analysis for the parameters used in PSO. The CNDP is formulated as a bi-level programming model. The sensitivity analysis method, one-at-a-time designs (OATD), is used to analyze the effects of parameters. Numerical example demonstrates that PSO is an effective algorithm for solving CNDP with proper parameters setting. The choice of swarm size has a clear effect to the implementation time and with small swarm size may fail to the optimal solution. Furthermore, inertia weight and maximum velocity has clear effects to the solution searching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the Internal Fraud Risk of Chinese Commercial Banks A Fast Bidirectional Method for Mining Maximal Frequent Itemsets A Prediction of the Monthly Precipitation Model Based on PSO-ANN and its Applications On the Analysis of Performance of the Artificial Tribe Algorithm Analysis on the Volatility of SHIBOR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1