一种利用深度和时间线索的新型超像素方法

Shengda Luo, A. Leung, Yong Liang
{"title":"一种利用深度和时间线索的新型超像素方法","authors":"Shengda Luo, A. Leung, Yong Liang","doi":"10.1109/ICSIPA.2017.8120667","DOIUrl":null,"url":null,"abstract":"In this paper, a novel approach to identifying superpixels in the cluttered environment is proposed. In our proposed method, the temporal cue and depth maps obtained from depth sensors are combined with the popular method SLIC for superpixels using a new formulation of distance-minimizing clustering. Under cluttered environment, this proposed method can, compared with color-based approaches, better identify the contour of objects. Experiments have been carried out using a public dataset to compare our approach to other methods. The experimental results demonstrate that our approach outperforms other approaches.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel superpixel approach utilizing depth and temporal cues\",\"authors\":\"Shengda Luo, A. Leung, Yong Liang\",\"doi\":\"10.1109/ICSIPA.2017.8120667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel approach to identifying superpixels in the cluttered environment is proposed. In our proposed method, the temporal cue and depth maps obtained from depth sensors are combined with the popular method SLIC for superpixels using a new formulation of distance-minimizing clustering. Under cluttered environment, this proposed method can, compared with color-based approaches, better identify the contour of objects. Experiments have been carried out using a public dataset to compare our approach to other methods. The experimental results demonstrate that our approach outperforms other approaches.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在杂乱环境中识别超像素的新方法。在我们提出的方法中,使用一种新的距离最小化聚类公式,将从深度传感器获得的时间线索和深度图与流行的SLIC方法相结合。在混乱环境下,与基于颜色的方法相比,该方法能更好地识别物体轮廓。使用公共数据集进行了实验,将我们的方法与其他方法进行比较。实验结果表明,我们的方法优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel superpixel approach utilizing depth and temporal cues
In this paper, a novel approach to identifying superpixels in the cluttered environment is proposed. In our proposed method, the temporal cue and depth maps obtained from depth sensors are combined with the popular method SLIC for superpixels using a new formulation of distance-minimizing clustering. Under cluttered environment, this proposed method can, compared with color-based approaches, better identify the contour of objects. Experiments have been carried out using a public dataset to compare our approach to other methods. The experimental results demonstrate that our approach outperforms other approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1