利用CUDA GPU加速蚁群优化算法

K. Wei, Chao-Chin Wu, Chien-Ju Wu
{"title":"利用CUDA GPU加速蚁群优化算法","authors":"K. Wei, Chao-Chin Wu, Chien-Ju Wu","doi":"10.1109/PDCAT.2013.21","DOIUrl":null,"url":null,"abstract":"Graph Processing Units (GPUs) have recently evolved into a super multi-core and a fully programmable architecture. In the CUDA programming model, the programmers can simply implement parallelism ideas of a task on GPUs. The purpose of this paper is to accelerate Ant Colony Optimization (ACO) for Traveling Salesman Problems (TSP) with GPUs. In this paper, we propose a new parallel method, which is called the Transition Condition Method. Experimental results are extensively compared and evaluated on the performance side and the solution quality side. The TSP problems are used as a standard benchmark for our experiments. In terms of experimental results, our new parallel method achieves the maximal speed-up factor of 4.74 than the previous parallel method. On the other hand, the quality of solutions is similar to the original sequential ACO algorithm. It proves that the quality of solutions does not be sacrificed in the cause of speed-up.","PeriodicalId":187974,"journal":{"name":"2013 International Conference on Parallel and Distributed Computing, Applications and Technologies","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Using CUDA GPU to Accelerate the Ant Colony Optimization Algorithm\",\"authors\":\"K. Wei, Chao-Chin Wu, Chien-Ju Wu\",\"doi\":\"10.1109/PDCAT.2013.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph Processing Units (GPUs) have recently evolved into a super multi-core and a fully programmable architecture. In the CUDA programming model, the programmers can simply implement parallelism ideas of a task on GPUs. The purpose of this paper is to accelerate Ant Colony Optimization (ACO) for Traveling Salesman Problems (TSP) with GPUs. In this paper, we propose a new parallel method, which is called the Transition Condition Method. Experimental results are extensively compared and evaluated on the performance side and the solution quality side. The TSP problems are used as a standard benchmark for our experiments. In terms of experimental results, our new parallel method achieves the maximal speed-up factor of 4.74 than the previous parallel method. On the other hand, the quality of solutions is similar to the original sequential ACO algorithm. It proves that the quality of solutions does not be sacrificed in the cause of speed-up.\",\"PeriodicalId\":187974,\"journal\":{\"name\":\"2013 International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2013.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Parallel and Distributed Computing, Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2013.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

图形处理单元(gpu)最近发展成为一个超级多核和完全可编程的架构。在CUDA编程模型中,程序员可以简单地在gpu上实现任务的并行思想。本文的目的是利用gpu加速求解旅行商问题的蚁群优化算法。本文提出了一种新的并行方法,称为过渡条件法。从性能方面和溶液质量方面对实验结果进行了广泛的比较和评价。TSP问题被用作我们实验的标准基准。实验结果表明,该方法的最大加速系数为4.74。另一方面,解的质量与原顺序蚁群算法相似。这证明了在加速的过程中,解决方案的质量并没有被牺牲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using CUDA GPU to Accelerate the Ant Colony Optimization Algorithm
Graph Processing Units (GPUs) have recently evolved into a super multi-core and a fully programmable architecture. In the CUDA programming model, the programmers can simply implement parallelism ideas of a task on GPUs. The purpose of this paper is to accelerate Ant Colony Optimization (ACO) for Traveling Salesman Problems (TSP) with GPUs. In this paper, we propose a new parallel method, which is called the Transition Condition Method. Experimental results are extensively compared and evaluated on the performance side and the solution quality side. The TSP problems are used as a standard benchmark for our experiments. In terms of experimental results, our new parallel method achieves the maximal speed-up factor of 4.74 than the previous parallel method. On the other hand, the quality of solutions is similar to the original sequential ACO algorithm. It proves that the quality of solutions does not be sacrificed in the cause of speed-up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulated-Annealing Load Balancing for Resource Allocation in Cloud Environments A Parallel Algorithm for 2D Square Packing Ten Years of Research on Fault Management in Grid Computing: A Systematic Mapping Study cHPP controller: A High Performance Hyper-node Hardware Accelerator Service Availability for Various Forwarded Descriptions with Dynamic Buffering on Peer-to-Peer Streaming Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1