新型碳基材料的光电化学制氢

Rajesh Sharma, K. Arnoult, Sunil Kumar Ramasahayam, Saad Azam, Zachary Hicks, A. Shaikh, T. Viswanathan
{"title":"新型碳基材料的光电化学制氢","authors":"Rajesh Sharma, K. Arnoult, Sunil Kumar Ramasahayam, Saad Azam, Zachary Hicks, A. Shaikh, T. Viswanathan","doi":"10.1109/IAS.2014.6978345","DOIUrl":null,"url":null,"abstract":"A transition to hydrogen as a major fuel could transform the US as well as global energy system increasing energy security while reducing environmental impact. This major transformation of our energy system would require a sustainable production of hydrogen using renewable resources. Hydrogen production using photo-electrochemical water splitting has been considered as a “holy grail” of sustainable hydrogen economy. Despite four decades of research since it was first shown that n-type TiO2 can be used for water splitting using sunlight, the search for a material that can efficiently harness solar energy for photo-electrolysis is still on. This paper will address some of the key challenges in the development of a material that is photoactive, stable, corrosion resistant and cost effective. This paper presents for the first time photo-electrochemical characterization of novel phosphorus, nitrogen doped carbon material (PNDC). The photocurrent density obtained was 0.416 mA/cm2, which is quite significant under visible radiation. This discovery opens up a large number of possibilities in development of a new class of carbon based materials for photo-electrochemical hydrogen production.","PeriodicalId":446068,"journal":{"name":"2014 IEEE Industry Application Society Annual Meeting","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Photo-electrochemical hydrogen production using novel carbon based material\",\"authors\":\"Rajesh Sharma, K. Arnoult, Sunil Kumar Ramasahayam, Saad Azam, Zachary Hicks, A. Shaikh, T. Viswanathan\",\"doi\":\"10.1109/IAS.2014.6978345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A transition to hydrogen as a major fuel could transform the US as well as global energy system increasing energy security while reducing environmental impact. This major transformation of our energy system would require a sustainable production of hydrogen using renewable resources. Hydrogen production using photo-electrochemical water splitting has been considered as a “holy grail” of sustainable hydrogen economy. Despite four decades of research since it was first shown that n-type TiO2 can be used for water splitting using sunlight, the search for a material that can efficiently harness solar energy for photo-electrolysis is still on. This paper will address some of the key challenges in the development of a material that is photoactive, stable, corrosion resistant and cost effective. This paper presents for the first time photo-electrochemical characterization of novel phosphorus, nitrogen doped carbon material (PNDC). The photocurrent density obtained was 0.416 mA/cm2, which is quite significant under visible radiation. This discovery opens up a large number of possibilities in development of a new class of carbon based materials for photo-electrochemical hydrogen production.\",\"PeriodicalId\":446068,\"journal\":{\"name\":\"2014 IEEE Industry Application Society Annual Meeting\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Industry Application Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2014.6978345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Industry Application Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2014.6978345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

向氢作为主要燃料的过渡可以改变美国和全球能源系统,提高能源安全,同时减少对环境的影响。我们能源系统的这一重大转变需要利用可再生资源可持续地生产氢气。利用光电化学水分解制氢被认为是可持续氢经济的“圣杯”。自从第一次证明n型二氧化钛可以利用阳光进行水分解以来,人们已经进行了40年的研究,但寻找一种能够有效利用太阳能进行光电分解的材料仍在进行中。本文将讨论在开发一种具有光活性、稳定、耐腐蚀和成本效益的材料时所面临的一些关键挑战。本文首次对新型磷氮掺杂碳材料(PNDC)进行了光电化学表征。得到的光电流密度为0.416 mA/cm2,在可见辐射下,光电流密度非常显著。这一发现为开发一类用于光电化学制氢的新型碳基材料开辟了许多可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photo-electrochemical hydrogen production using novel carbon based material
A transition to hydrogen as a major fuel could transform the US as well as global energy system increasing energy security while reducing environmental impact. This major transformation of our energy system would require a sustainable production of hydrogen using renewable resources. Hydrogen production using photo-electrochemical water splitting has been considered as a “holy grail” of sustainable hydrogen economy. Despite four decades of research since it was first shown that n-type TiO2 can be used for water splitting using sunlight, the search for a material that can efficiently harness solar energy for photo-electrolysis is still on. This paper will address some of the key challenges in the development of a material that is photoactive, stable, corrosion resistant and cost effective. This paper presents for the first time photo-electrochemical characterization of novel phosphorus, nitrogen doped carbon material (PNDC). The photocurrent density obtained was 0.416 mA/cm2, which is quite significant under visible radiation. This discovery opens up a large number of possibilities in development of a new class of carbon based materials for photo-electrochemical hydrogen production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancements in vibration monitoring for the mining industry Real time benefit computation for electric distribution system automation and control A web-based communication module design of a real-time multi-sensor fire detection and notification system Analysis of PEV charging impact on distribution transformer aging for charging station transformer design Simplified models of LED ballasts for spice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1