用于RDF图的互连评估的度量驱动方法

Najme Yaghouti, M. Kahani, Behshid Behkamal
{"title":"用于RDF图的互连评估的度量驱动方法","authors":"Najme Yaghouti, M. Kahani, Behshid Behkamal","doi":"10.1109/CSICSSE.2015.7369244","DOIUrl":null,"url":null,"abstract":"In recent years the web has evolved from a global information space of linked documents to one where both documents and data are linked. What supports this evolution is a set of best practices in publishing and connecting structured data on the web that is called linked data. The usefulness of linked data relies on how much related concepts are linked together. The aim of this research is to propose a metric-driven approach for interlinking assessment of a single dataset. The proposed metrics are categorized into three groups called internal linking, external linking and link-ability from other datasets. These metrics consider both graph structure (topology) and schema of datasets (semantic information) to evaluate interlinking with appropriate accuracy.","PeriodicalId":115653,"journal":{"name":"2015 International Symposium on Computer Science and Software Engineering (CSSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A metric-driven approach for interlinking assessment of RDF graphs\",\"authors\":\"Najme Yaghouti, M. Kahani, Behshid Behkamal\",\"doi\":\"10.1109/CSICSSE.2015.7369244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years the web has evolved from a global information space of linked documents to one where both documents and data are linked. What supports this evolution is a set of best practices in publishing and connecting structured data on the web that is called linked data. The usefulness of linked data relies on how much related concepts are linked together. The aim of this research is to propose a metric-driven approach for interlinking assessment of a single dataset. The proposed metrics are categorized into three groups called internal linking, external linking and link-ability from other datasets. These metrics consider both graph structure (topology) and schema of datasets (semantic information) to evaluate interlinking with appropriate accuracy.\",\"PeriodicalId\":115653,\"journal\":{\"name\":\"2015 International Symposium on Computer Science and Software Engineering (CSSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Computer Science and Software Engineering (CSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICSSE.2015.7369244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Computer Science and Software Engineering (CSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICSSE.2015.7369244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来,网络已经从一个链接文档的全球信息空间发展成为一个文档和数据都链接的空间。支持这一演变的是一组在网络上发布和连接结构化数据的最佳实践,这些数据被称为链接数据。关联数据的有用性取决于有多少相关概念被关联在一起。本研究的目的是提出一种度量驱动的方法,用于单个数据集的相互关联评估。建议的指标分为三组,称为内部链接、外部链接和来自其他数据集的链接能力。这些度量同时考虑数据集的图结构(拓扑)和模式(语义信息),以适当的精度评估互连。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A metric-driven approach for interlinking assessment of RDF graphs
In recent years the web has evolved from a global information space of linked documents to one where both documents and data are linked. What supports this evolution is a set of best practices in publishing and connecting structured data on the web that is called linked data. The usefulness of linked data relies on how much related concepts are linked together. The aim of this research is to propose a metric-driven approach for interlinking assessment of a single dataset. The proposed metrics are categorized into three groups called internal linking, external linking and link-ability from other datasets. These metrics consider both graph structure (topology) and schema of datasets (semantic information) to evaluate interlinking with appropriate accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A metric-driven approach for interlinking assessment of RDF graphs Making a tradeoff between adaptation and integration in adaptive service based systems High performance GPU implementation of k-NN based on Mahalanobis distance Game theory-based and heuristic algorithms for parking-lot search Using fuzzy undersampling and fuzzy PCA to improve imbalanced classification through Rotation Forest algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1